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Introduction

Music in digital form is widely spread nowadays. Many people keep their

music libraries on personal computers, mainly in the MP3 format. Various

musical compositions are also easily accessible via Internet.

Musical pieces can be grouped into genres according to their sounding

characteristics. For most people classi�cation of a given composition is a

reasonably easy task. Studies show that listening to 250 milliseconds of

sound would often be enough for a human to produce a correct decision

[GT07]. Automating this classi�cation process is, however, not so trivial.

Fortunately, we can state the task of digital music classi�cation as a ma-

chine learning problem. We consider a set of musical compositions with

manually assigned genres as a training set and use it to devise an automatic

genre classi�er. The traditional approach requires us �rstly to extract mean-

ingful features from the acoustic signals, and then apply a general-purpose

machine learning algorithm on the transformed data.

For feature extraction we used the ideas proposed in the paper by G.

Tzanetakis, G. Essl and P. Cook [GT07]. In their research the authors pro-

pose some features that represent music surface and rhythmic structure of

audio signals. We reevaluated these features on our own dataset and sug-

gested some additions. Finally, we selected the best performing feature set

combining both the original features and our proposed additions.

As long as features are selected properly, the choice of the algorithm is

largely irrelevant. In this work we selected the Naïve Bayes algorithm due

to its conceptual simplicity and e�ciency. Our preliminary studies have

con�rmed that its performance is at least as good as that of some other

algorithms, such as SMO, J48, NBTree (Figure 1).

Classi�cation precision of the improved feature set is evaluated by train-

ing statistical pattern recognition classi�er. Furthermore, our results are

compared to those of G. Tzanetakis, G. Essl and P. Cook and found to be

very encouraging.

The �rst chapter of this thesis describes the method of digital represen-

tation of music. The next section gives a short overview of machine learning

principles and techniques with some detailed information about the Naïve

Bayes classi�er. The third chapter presents brief descriptions of the features

that are used for creating automatic music classi�cation algorithm. Eval-

uation of the improved algorithm tested on the data set of six music gen-
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res (classic, pop, punk, rap/hip-hop, rock and trance) can be found in the

fourth chapter. The summary section concludes the results of our research

and explains the ideas for future studies. The given paper is supplied with

an Appendix A � a CD where code of feature extraction could be found.

Appendix B provides more �gures to illustrate the results of the work.
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Chapter 1

Mathematical Treatment of Music

Before we can approach the problem of automated music classi�cation, we

must clarify what music is, and how is it possible to measure similarities

between musical compositions.

1.1 Music and Sound

Music is a melodic type of sound. Sound, in turn, is a mechanical disturbance

of a medium, either of gas, liquid or solid. For example, when we play the

guitar, the movement of the string disturbs the surrounding air, causing the

displacement of molecules. Molecules vibrate and transmit this vibration

further by striking each other until their initial energy disappears [Ben06].

Figure 1.1: The diagram represents the displacement from equilibrium over

time creating a sound wave [Jis].

In this manner sound pressure is transmitted from its source to our ears

as a wave. In the air sound waves have a pressure which alternately deviates

from a state of equilibrium. These deviations are regions of compression and

rarefaction of molecules (Figure 1.1). Due to this property sound wave can

be represented as a continuous periodic function of time (Figure 1.2).
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Figure 1.2: Sound wave can be represented as a function of time. The dia-

grams a), b) and c) show the sound wave in di�erent scales [Jis].

1.2 Digital Representation of Sound

In order to process sound waves on a computer, the corresponding function

needs to be converted to a digital form � a process known as sampling.

Sampling is performed by measuring the continuous signal at regular intervals

(Figure 1.3). Each measurement is referred as a �sample�.

Figure 1.3: The blue sinusoidal curve represents the continuous analog wave-

form being sampled. Measurements of the instantaneous amplitude of the

signal are taken at regular time intervals of length ∆t [DR].

Once we have converted the sound wave into a stream of numbers we can

store and process this information on a computer. As there are no problems

to store numerical information on a machine, that could also do all needed

calculations, it seems much more convenient to process sound on a computer.

The data of a music �le can be stored in many di�erent ways. One of the

main parameters is �sampling frequency� of the stored signal � the number of

times per second samples are taken. This attribute, also known as �sampling

rate�, is measured in Hertz (1 Hz = 1 time per second).

The choice of sampling frequency is an issue we do not deal with in this

6



work. We only note that in general, the lower the sampling rate of the

digitized composition, the more information is lost about the sound wave.

From the other side, we should remember the Nyquist-Shannon sampling

theorem which says that if a function x(t) contains no frequencies higher

than B hertz, it is completely determined by giving its ordinates at a series

of points spaced 1/(2B) seconds apart. Consequently, ideal quality of the

record could by achieved with a sampling rate equal to 2B (or higher but

that is pointless wasting of resources) [Lav04].

The optimal sampling frequency may be di�erent depending on a situa-

tion. If we store data for listening, it is always preferable to choose the com-

position with the highest reasonable (2B, where B is maximum frequency

perceived by human ear, ' 40 kHz) value of sampling rate. For the pur-

poses of analysis, such as automated genre detection, we usually select some

golden middle, so that the calculations would be faster and yet no important

information is lost.

1.3 Methods of signal analysis

As we know already what music is and how it can be stored in a digital

way, it is time to think about the analysis methods that could be applied

in a sense of processing numerical representation of music. In our work we

use two widely known techniques: spectral analysis and autocorrelation. We

describe them brie�y in the following sections.

1.3.1 Spectral analysis

One of the classical methods of extracting the properties of a sound wave is

known as �Fourier series�, �Fourier transform� or sometimes �spectrum�. It

turns out that any periodic function may be represented as an in�nite sum

of simpler functions � sine waves (Figure 1.4):

SNf(x) =
a0

2
+

N∑
n=1

[ancos(nx) + bnsin(nx)], N ≥ 0

for any continuous1 periodic function f.

The coe�cients ai and bi of the Fourier series can be found as

ai =
1

π

∫ π

−π
f(t)cos(nt)dt,N ≥ 0

bi =
1

π

∫ π

−π
f(t)sin(nt)dt,N ≥ 1

1In fact, f need not be strictly continuous, but we avoid these formal details for brevity

here.
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The decomposition of a continuous function in to the component sine

waves is known as the Fourier series, after the 18th century a French math-

ematician and physicist Joseph Fourier, who discovered it.

As a melody could be represented by the combination of accords also any

continuous periodic function, such as sound wave, may be represented as an

in�nite sum or integral of the simplest waves as sines and cosines (Figure

1.4). An 18th century scientist, named Joseph Fourier (1768 � 1830), proved

it mathematically.

Figure 1.4: Complex sound as a sum of sine waves [DR].

The practical meaning of Fourier transform (FT) is that any sound could

be represented as a set of multiple frequencies. Mostly spectrum is used

for detecting intensities of those frequencies. The main advantage of it is

that our mechanism of sound perception is also based on spectral analysis:

in our ears there are special nerves that perceive a vibration of a sound

wave, each of them is responsible for a particular frequency being sensitive

to it and starting resonate with a larger amplitude of vibration causing an

electrical impulse which passes along the auditory nerve towards the brain

[Ear]. Therefore, spectral representation is a very valuable technique due to

its similarity to the way human perceive sounds.

For music in digital form, a slight modi�cation of the Fourier series is

used, known as the �Discrete Fourier Transform (DFT)�. The DFT can be

computed e�ciently using the algorithm known as the Fast Fourier Transform

(FFT). We refer the reader to the book of D. Benson [Ben06] for a thorough

coverage of these topics.

1.3.2 Autocorrelation

Musical genres often di�er a lot in their rhythmical characteristics. To detect

the rhythm structure of the composition we use the autocorrelation method.

Autocorrelation is a special case of cross-correlation that, in signal pro-

cessing, is a measure of similarity of two waveforms as a function of a time-lag
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applied to one of them. This is also known as a sliding dot product or inner-

product.

The discrete autocorrelation R with lag T is computed as a correlation

coe�cient between a signal for a discrete signal st and a shifted version of it

s(t− T ):

Rss(T ) =
∑
t

xtx̄t−T

A high value of autocorrelation coe�cient at lag T denotes that the signal

st and its shifted version s(t− T ) are similar, which could indicate a periodic

melodic structure with a period of T samples. Detection of such structure is

useful for locating the main beat of the composition.
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Chapter 2

Machine Learning Basics

Once a musical composition is represented in terms of numbers, we would

like to �nd an algorithm that assigns a proper genre to each piece of music.

Although it might be possible to design such an algorithm �manually�, by

specifying some common sense rules of thumb this way is too complicated. A

much better approach is to collect a data set of labeled musical compositions

and build a classi�er that generalizes the information in the data. This

approach is known as machine learning.

In the following the process of dataset construction and a brief description

of the chosen classi�er are provided.

2.1 Data

Most classical machine learning techniques require data in the form of vectors.

From the previous chapter we already know how to digitize a piece of music

and represent it as a vector of numerical values. However, the representation

of a musical composition directly as a wave or a spectrum is resource intensive

and rather uninformative. A much better approach is to represent sound in

terms of a �nite set of features � numerical values corresponding to various

sounding characteristics valuable for genre classi�cation. Exact speci�cations

of the features are presented in the third chapter.

Finally, when the feature set is �xed, all features are extracted and the

data collected, all information could be represented as a matrix with each row

corresponding to a piece of music: each column corresponding to a feature

and each cell, assigning the value of a given feature, to a given musical

composition (Figure 2.1).

2.2 The Choice of Classi�er

Suppose that we know exactly that the compositions of one genre are on

average longer than the others. 'Classical music" was such a genre in our

dataset. In this case, if we were to assign a genre to a musical piece of long
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Figure 2.1: In a supervised learning scenario each training example (music

composition/�le) consists of an object to be classi�ed presented by its fea-

tures, as well as the correct category (style) to which it should be assigned.

All genre names represented by a three-letter acronym.

duration, we would be tempted to classify that piece as belonging to the

"classic" genre. This simple idea could be generalized in using probability

theory. We have two categories (classes): C (classic) and N (non-classic)

genre, and we know the conditional probability distribution of a measured

attribute (such as length of the composition) for both classes. In other words,

for a given class g we know the probability of obtaining a composition with

feature vector x from genre g � P (x|g). Usually we know something about

these distributions (as in example above, we know that the probability of

comparably long composition of the category C is one or 100%). What we

want to know is what is the most probable genre of a given a composition

x (P (g|x)) [Tre04] that due to the well known in probability theory Bayes

theorem could be calculated as follows:

P (g|x) =
P (x|g)P (g)

P (x)
=

P (x|g)P (g)

P (x|N)P (N) + P (x|C)P (C)

where P(x) denotes the a-priori probability of composition x, and P(g) � the

a-priori probability of class g (i.e. the probability that a random composition

is of that genre). So if we know the values P (g) and P (x|g) (for G = {C,N}),
we may determine P (g|x), which is already a nice achievement that allows

us to use the following classi�cation rule: If P (C|x) > P (N |x), classify x as

classic, otherwise classify it as non-classic. This is the so-called maximum a-

posteriori probability (MAP) rule. Using the Bayes formula we can transform

it to the form: If
P (x|S)

P (x|L)
>
P (L)

P (S)

classify x as classic, otherwise classify it as non-classic composition.

Of course, our example is very simple: usually it is not possible to �nd

a feature that could guarantee 100% probability of some class, so we are
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forced to use a set of features for obtaining much more precise classi�cation

result; also the number of categories could be much bigger. In those cases

the decision making process becomes complicated. To simplify them some

algorithms were built, one of them, Naïve Bayes, was chosen to solve our

problem of automatic genre classi�cation.

2.2.1 The Naïve Bayes Classi�er

In the present paper we selected the Naïve Bayes algorithm for automatic

genre classi�cation mostly due to its conceptual simplicity and comparably

good e�ciency. Our preliminary studies have con�rmed that its performance

is not worse than other algorithms, such as SMO, J48, NBTree (Figure 1).

The Naïve Bayes classi�er is a classi�cation method that is used for cat-

egorical data based on applying Bayes' theorem. By the classical Bayes

approach, for a record to be classi�ed, the categories of the predictor vari-

ables are noted and the record is classi�ed according to the most frequent

class among the same values of those predictor variables in the training set.

A rigorous application of the Bayes theorem would require availability of all

possible combinations of the values of the predictor variables:

p(G,F1, F2, . . . , Fn) = p(G)p(F1, F2, . . . , Fn|G) =

= p(G)p(F1|G)p(F2, . . . , Fn|G,F1) =

= p(G)p(F1|G)p(F2|G,F1)p(F3|G,F1, F2) . . . p(Fn|C,F1, F2, . . . Fn − 1)

When the number of variables is large enough, this requires a training set

of unrealistically large size.

The Naïve Bayes method overcomes this practical limitation of the rig-

orous Bayes approach to classi�cation. The major idea of it is to use the

assumption that predictor variables are independent random variables. This

makes it possible to compute probabilities required by the Bayes formula

from a relatively small training set:

p(G,F1, F2, . . . , Fn) ≈ p(G)p(F1|G)p(F2|G) . . . p(Fn|G) = p(G)p(Fi|G)

So, we Naïve Bayes assumption could be presented by formula:

p(G|F1, F2, . . . Fn) ≈ 1

Z
p(G)

n∏
i=1

p(Fi|G)

where Z is a scaling factor dependent only on F1, F2, . . . , Fn , i.e., a constant

if the values of the feature variables are known.

To sum up, we can say that in spite of its naive design and over-simpli�ed

assumption, Naïve Bayes classi�ers often work much better in many complex

real-world situations than one might expect. An advantage of the Naïve

Bayes classi�er is that it requires a relatively small amount of training data

to estimate the parameters necessary for classi�cation.
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2.3 Data Validation

To validate the performance of our algorithm we used the 10-fold cross val-

idation technique. The idea of the approach is to split the training set into

10 parts, use 9 for training and 1 for testing (measuring the precision), and

then repeating this procedure for each of the 10 parts and taking the aver-

age of the 10 obtained precision estimates. This validation method is known

to produce reasonably accurate results even when the training set is small

[IHW05].
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Chapter 3

Algorithm for Music

Classi�cation

3.1 Statement of the Problem

What we ultimately wish to obtain is an automatic musical genre classi�-

cation algorithm, that is a decision function that would tell us with what

probability a music composition is a representative of one of six de�ned gen-

res: classic, pop, punk, rap/hip-hop, rock and trance. We shall look for

this function by training the Naïve Bayes algorithm on a set of manually

pre-classi�ed music compositions. This is nearly a general statement of the

standard machine learning problem. Therefore, the only thing we need is a

set of meaningful features

3.2 Signal Features for Genre Classi�cation

The choice of informative sound features is crucial for the performance of the

genre classi�cation algorithm. Genre classi�cation is an arti�cial division of

musical compositions into several groups made by people, so it is important

to understand how people perceive music and how sounding characteristics

could be represented in a numerical way understandable for a computer. As is

customary, the psychological characteristics of music could be classi�ed into

four groups: tonal, dynamic, temporal and qualitative [Ols67]. The paper

that we base our work on [GT07] proposes 17 acoustical features that describe

music surface(tonal) and rhythm (temporal) aspects of sounding character-

istics. The features of the �rst category corresponds to texture, timbre and

instrumentation of the composition. The features of the second served to

describe rhythmic structure of music: time, duration, tempo, rhythm.

We have implemented extraction of the features proposed in the paper

and applied to our test data which contained somewhat di�erent set of genres.

As the results were less than optimal, we decided to explore some of our own

ideas to improve classi�cation accuracy.
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This section provides descriptions for all the features used in the experi-

ments that follow. In the fourth chapter we evaluate our proposed features

and assess the degree of improvement.

3.2.1 Data processing

Our data is a collection of 300 MP3 �les containing 50 music compositions of

each of the following genres: classic, pop, punk, rap/hip-hop, rock, trance.

For analyzing sound waves, that we received by presenting music �les in

a digital format, we used Weka � a powerful suite of machine learning soft-

ware which supports several standard data mining tasks, such as clustering,

classi�cation, visualization and feature selection that we have used in our

work.

To process data and convert it to an appropriate format accepted by

Weka, we used Scilab [Sci] � an open source software for mathematical cal-

culations, that supports reading and writing of sound �les in WAV format.

As Scilab deals only with sound �les in the WAV format. Finally, we used

Sound eXchange [Sox] � a sound converter software to convert MP3 �les to

the WAV.

To reduce the size of data and save on computation, we decreased the

sample rate of all compositions from 44 kHz down to 8 kHz. Manual in-

spection showed that this transformation still conserved enough signal to be

able to recognize the genre by ear. We use the Comma Separated Values

(CSV) format to hold the intermediate data tables where all the information

except of feature and genre names is numeric and presented in a following

way (Figure 2.1).

3.2.2 Texture and Analysis Windows

Figure 3.1: Feature extraction: location of texture windows.

Following the methodology proposed in the study [GT07], to classify the

whole composition we use a short fragment of length 1 second (= 8000 sam-

ples). We refer to this fragment as the texture window. Together there are

30 texture windows for each composition situated as far as possible close to

the middle of composition (Figure 3.1) because we hope sounding there is

the most typical for the given genre. Each texture window is further split
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Figure 3.2: Feature extraction: texture and analysis windows

into 15 smaller windows of equal length � analysis windows each of them 512

samples long (Figure 3.2). As a result, in total from each data point we had

30 records and from the whole data set 6 styles*50 �les*30 instances = 9000

instances for further analysis.

For classi�cation we used the features computed from the texture window.

We name our features using short codes such as lowEnergy to be able to refer

to them conveniently and mark the features that we propose with an asterisk

(e.g. size*).

All features, except for size* and lowEnergy, are computed as the mean

and standard deviation of the corresponding metrics of the analysis window.

Therefore, for each analysis window metric (such as, wavZero), we de�ned

two features to be used in the machine learning algorithm: average (_mean)

and standard deviation (_std) (e.g. wavZero_mean and wavZero_std).

3.2.3 The Features

All features presented in this section proposed by us (marked with an as-

teriks) or by the authors of the paper [GT07]. As mentioned before, we

consider two types of features: music surface and rhythm features. Music

surface features can be further grouped into two categories � those that are

based on the time-domain characteristics of the signal (�wave features�) and

those that are based on the spectral representation (�analysis of frequencies�

aka �spectral features�).

3.2.4 Wave Features

In this section we present features obtained from a pure audio signal wave.

Low energy (lowEnergy)

One of the ideas proposed in the paper is to measure how the level of loudness

is changing over the composition. As we know from our own experience, songs

of rap/hip-hop genre have the same level of loudness all the time but we can

not say the same about pop compositions where jumps and falls of loudness
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are more common. This can be easily seen from the plot of lowEnergy_mean

feature values (Figure 4).

LowEnergy is the percentage of analysis windows that have energy (and

therefore loudness) less than average energy of the analysis windows over the

texture window.

Energy for one analysis window i is calculated by formula:

energyi =
512∑
j=1

wj
2.

Zero crossings (wavZero)

Authors of the paper mentioned that compositions of di�erent genres have

di�erent amount of noise in their signals. To measure it they propose to

count the number of zero crossing of the signal within the analysis window.

We denote this feature as wavZero.

As we see from the plot (Figure 5), the amount of the noise in classic

music di�ers a lot from any other genre compositions, especially from trance

and rap/hip-hop ones, what intuitively can be the truth.

Average amplitude (wavAvAmpl*)

A particularly useful feature can be obtained by measuring the di�erence

wavAvAmpli between the highest and the lowest peaks of the signal within

each analysis window wi as follows:

wavAvAmpli = max(wi)−min(wi).

Mean amplitude (wavAvAmpl_mean*) is often higher for louder compo-

sitions. This could, for example, help to discriminate punk from classical

music (see Figure 6). Standard deviation of amplitudes (wavAvAmpl_std*,

in turn, can detect compositions with a big and small di�erence in loudness

of the signal of di�erent analysis windows, such as rap/hip-hop and classic

(Figure 7).

Average di�erence between sample values (wavAvDif*)

We obtain the value of the WavAvDif feature by measuring the rate of the

signal level change within each neighbor sample values. After that we �nd

the average of that value for each analysis window.

For wavDifj = |wj+1 − wj| � di�erence between neighbor sample values

wavAvDifi =
(
∑512

j=1wavDifj)

512

is average di�erence between sample values on the analysis window i.
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It is worth to say that two main characteristics of sound, such as loud-

ness and main frequency, are constantly dependent on the energy of signal.

Therefore, WavAvDif, that explores monotony of the signal, helps to distin-

guish loud compositions of high frequencies (maximum values of the feature)

from opposite ones. WavAvDif shows whether the signal changes a lot over a

texture window or its value is more or less constant. As we see from the plot

(Figure 8) the signal of a rap/hip-hop music could be named monotonous

(quiet and bass) in comparison with a punk one.

Length of the composition (size*)

One of the most simple but still e�ective properties is the length of a compo-

sition measured in seconds. This feature stands somewhat separate from the

other ones here as it does not use windows and requires the whole composition

to be available. However, it provides a signi�cant classi�cation improvement:

as illustrated by the plot (in Figure 9), classic and trance compositions are

usually much longer then pop and punk ones.

3.2.5 Analysis of frequencies

Another approach of music analysis is based on a spectral characteristic

(Fourier Transform) of a sound signal that leads us to the understanding

of a music as a sum of signals of di�erent frequencies. Knowing the frequen-

cies that exist in our signal we can calculate average frequency of it. For

easier calculations we are going to use Fast Fourier Transform (FFT) � an

e�cient algorithm to compute the discrete Fourier transform [CW65]. All

features represented in this chapter are based on the value of an average fre-

quency (centroidi) of a signal over analysis window calculated by following

formula:

centroidi =

∑512
i=1 fiM [fi]∑512
i=1M [fi]

.

whereM [fi] is the magnitude of the FFT at frequency bin fi within 512 bins

of the analysis window.

Centroid (centroid)

The simplest way to analyze the role of an average frequency of an au-

dio signal is to measure its mean (centroid_mean) and standard devia-

tion(centroid_std) values over texture window.

From the plot (Figure 10) we can see that the minimal average frequency

over texture window (centroid_mean) is detected in Trance compositions

and maximum in Rock ones. Furthermore, centroid_std feature helps us

distinguish classic music that includes mostly one type of frequencies from

the others, where frequencies vary greatly (Figure 11).
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Average change of average frequency (flux)

Having the value of the average frequency of the signal for each analysis

window wi we can think about measuring how it di�ers from one analysis

window to another by computing the di�erence by the following formula:

fluxi = |centroidi+1 − centroidi|

.

As our experiments showed (Figure 12), the mean di�erence between

neighbor analysis windows over the whole texture window (flux_mean) helps

to detect very impulsive compositions that have frequent change of frequency,

such as in rap/hip-hop songs, in comparison to classical music.

The Maximum High and Low Frequency Intensity (maxH*, maxL*)

Another powerful feature based on frequency analysis is a value of the max-

imum intensity of high (maxH*) and low (maxL*) frequencies. Usually, for

example, classic music may have maxL_mean* value much smaller then punk

music because accent is made for bass in the last one (Figure 14). Standard

deviation of maximums of high frequencies (maxH_std*) detects how big is

range of high frequencies in the composition: for classic and rap/hip-hop it's

quite small, for punk � vice versa � range of high frequencies is really big

(Figure 13).

Figure 3.3: Frequency intensities of the analysis window of the signal are

center-symmetrical

To �nd the value of maxH* (maxL*) we �nd the maximum of high (low)

frequency intensity for each analysis window simply by comparing the values

received after FFT. As the values of FFT are symmetrical (Figure 3.3, so we

can explore only half of them, concerning si = (s1, . . . , s256) as a representa-

tion of a frequency-domain for the analysis window i where the �rst half of
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the values (s1, . . . , s128) give us overview over low-frequencies intensity, and,

correspondingly, (s129, . . . , s256) represents intensity of high-frequencies.

3.2.6 Rhythm Features

In this section we present features that describe rhythmic characteristic of

music. Ideas of all of them are taken from the paper but calculations are

simpli�ed.

To compute these features we do not use the texture/analysis windows

framework as before. Instead, we select a fragment of length 2 seconds,

subsample the signal to 1000 Hz, compute the autocorrelation of the resulting

vector and detect �ve highest peaks of the autocorrelation function.

For detecting �ve highest peaks we use following strategy: on each and

every step we �nd the maximum value of the ordinate vector and control

whether values of its 50 neighbors from both sides are lower. If not we

change the values of the controlled point and 10 his neighbors to the average

value and continue our search until we �nd all peaks we need.

Relative Amplitudes (a0, a1)

The feature a0 value is calculated as an relative amplitude (divided by sum

of all �ve amplitudes) of the �rst peak; a1 � of the second peak. Both of

them mainly help to separate trance music compositions from others (Figure

15, 16).

3.2.7 The Feature Vector

Altogether we end up with a feature vector consisting of 18 elements. To clar-

ify whether all of them are really needed we used the a feature set evaluation

facilities of Weka (Classi�erSubsetEval, greedy search) to �nd the optimal

feature set. As a result we obtained the following 13-dimensional feature

vector: (a0, a1, centroid_mean, centroid_std, flux_mean, lowEnergy,

maxH_std*, maxL_mean*, wavZero_std, wavAvAmpl_mean*, wavAvAmpl_std*,

wavAvDif_mean*, size*).

As we see from the table (Figure 3) the �nal feature set is a combination

of 5 features from the original paper, 2 simpli�ed features from the paper and

6 our proposals of meaningful features. Furthermore, it includes features of

two types: music surface(11) and rhythm(2) features. Features in the �nal

feature set represent also both calculation bases: wave(8) and spectral(5)

features.
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Chapter 4

Evaluation of Results

We applied the feature extraction and classi�cation techniques, described in

the previous chapters, on our data set. This chapter introduces evaluation

of the obtained results.

To illustrate the usefulness of each separate feature, we shall illustrate

its ability to discriminate among six genres (classic, pop, punk, rap/hip-hop,

rock and trance) that we used in our experiments.

4.1 Classi�cation Precision

To observe the classi�cation results we used the confusion matrix � a matrix

where each column represents the instances of a predicted genre, while each

row represents the instances of an actual genre. One bene�t of a confusion

matrix is that it is easy to see if the system is confusing two genres.

For evaluation of e�ciency of proposed algorithm we measured classi�ca-

tion precision for two di�erent tasks. One of them is the ability to distinguish

compositions of a given genre from all others. Another task is to detect which

of those six genres suits the best for a given composition. The results are

presented below.

4.1.1 One Genre vs Others Classi�cation results

To evaluate our features we wanted �rstly to know how successfully compo-

sitions of a given genre are distinguished from the whole data set. For this

purpose we used data labeled for two genres: one genre and all other compo-

sitions. On average more than 77% of compositions were classi�ed correctly,

and in the case of classical music the classi�cation precision got up to 94.8%,

which we consider to be a rather successful result. Figure 4.1 provides more

information about one genre classi�cation.

The following plot (Figure 4.2), made of the data proposed by the con-

fusion matrix for two classes (genre and other), introduces the percentage

of misclassi�cation for detecting genre compositions from other (genre mis-
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Figure 4.1: Evaluation of correctly detecting each genre from others.

Figure 4.2: Percentage of wrongly classi�ed compositions between genre and

others.

take) and for distinguishing entities of other genres from genre compositions

(other mistake).

As we see from the plot, both mistakes are not equal by their value. For

all classes genre mistake is higher than other mistake but there are genres for

which this di�erence is abnormally big. The most unreliable is distinguishing

rock compositions � 59% , pop and trance entities are also classi�ed with less

than 60% correctness. As the results of our research show that distinguishing

compositions of classic genre from others is the easiest task for our algorithm.

According to distinguishing other compositions from genre ones: in all cases

mistake percentage is not bigger than 16%.

4.1.2 All Genres Classi�cation results

The results of all genre classi�cation are signi�cantly better than the same

by random classi�cation (Figure 2). Classi�cation precision of our algorithm

(61,6%) for our music genre set is even higher than of algorithm proposed
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by the authors of the paper which classi�es about 57,5% of the compositions

correctly.

The observation of the confusion matrix (Figure ??) indicates that pop

and rock genres are most problematic for classi�cation, these two genres being

often confused for punk music. There are several reasons for the misclassi-

�cation. Firstly, quite often a genre assignment to a musical composition

is strongly biased by non-acoustic factors, such as the brand and image of

the performer. For example, a number of compositions considered as punk

and hip-hop are di�cult to discern from pop to a non-specialist. Secondly

it is quite popular nowadays to mix genres, for example, adding a violin

part in some single parts of the composition. There could be even some spe-

cial mixed-genres but in our work we accept only six really important music

types. And �nally, our choice of the features may still not be optimal to

classify the chosen set of genres.

4.2 Comparing the Results

Comparing our results to those from the paper we based our work on, �rst

of all, we should note that data set was very di�erent in both cases. This

could be a reason why most of the features used in the paper gave worse

results in our case. That was the reason why we decided to propose our own

features that improved the algorithm of music genre classi�cation. But we

should acknowledge that result is still far from the ideal.
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Summary

In this thesis we presented a study of an approach to automated musical

genre classi�cation. Besides a brief overview of the theoretical background,

we documented our approach, the experiments we performed and the results

we obtained.

In the practical part of our work we extracted features proposed in the

paper [GT07] and evaluated their work on our data set using di�erent algo-

rithms. Afterwards, we �xed the classi�er, made some proposals for improv-

ing the feature set, extracted new features and evaluated their classi�cation

precision. Finally, we constructed new feature set of 13 elements that classi-

�es music of six genres with the accuracy of 61,6% that is almost four times

better than random.

There are several directions for future research. One of the obvious is to

continue work on the improvement of musical genre classi�cation algorithms,

searching for new valuable features that could be extracted from the audio

signal. From the other point of view, we could think about another applica-

tion of already known methods of sound wave processing. For example, it is

natural for human beings to describe music by some arti�cial characteristics,

such as �positive�, �negative�, �aggressive�, even more complicated like music

for driving, relaxing, or even typical music for horror movies. However, there

is no stable connection between music genres and such characteristics. This

is the reason why we could try to �nd an algorithm for music classi�cation by

another categorical descriptions � �arti�cial genres�. This could provide an

easier search for a particular set of music compositions that will help people

to construct their play-lists automatically depending on their mood, desire or

context. Moreover, we believe that such an algorithm could simplify the work

of professional sound-producers; they will be able to get intelligent proposals

of music compositions by their arti�cial characteristics.
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Muusika ºanri avastamine kasutades Naïve

Bayes klassi�kaatori.

Bakalaureusetöö (4ap)

Anastassia Semjonova

Resümee

Tänapäeval hoitakse muusikat peamiselt digitaalvormis MP3 formaadis nii

arvutis kui ka internetis. Muusika faile on nii palju, et neid tuleb kuidagi

klassi�tseerida. Kompositsioone on võimalik grupeerida ºanrideks heliseva

iseloomu järgi. Paljud inimesed, nagu uuringud näitasid, oskavad muusika

fragmendi klassi�tseerida lühikese (250 millisekundi) kuulamisaja jooksul,

kuigi selle protsessi automatiseerimine on palju keerulisem ülesanne. Kaesol-

eva töö eesmargiks on lahendada see problem, kasutades masinõpe mee-

todeid.

Töö baseerub G. Tzanetakis, G. Essl ja P. Cooki artiklil [GT07], mis

käsitleb muusika ºanri avastamisalgoritmi loomise temaatikat. Peamiseks

ideeks on esitada muusika faile numbrilises formaadis ja võta välja sellest in-

formatsioonist mõned tunnused, mis kirjeldaksid muusika helisust ja aitaks

ºanrideks klassi�tseerimisel. Esiteks, me realiseerisime artiklis pakutud tun-

nuste arvutamismeetodit ja hinnasime nende töö meie andmestikul, mis koos-

neb 300 muusika failidest � iga ºanri (klassika, pop, punk, rap/hip-hop, rokk

ja trance) esitavad 50 kompositsiooni. Seejärel valisime klassi�kaatorit ja

pakkusime välja oma ideed. Tulemuseks me saime 13-elemendilist tunnuste

vektori, mis pooleli koosneb baseeruvas artiklis esitatud tunnustest ja pooleli

meie ideedest. Tunnuste vektor koos valitud algoritmiga võimaldavad klas-

si�tseerida 6 ºanri lood 61,6% täpsusega, mis on peaaegu neli korda parem

kui juhuslik. Peale seda, tulemus on 5% parem kui see mida said baseeruva

artikli autorid.

Käesolevas töös püstitatud probleem on väga aktuaalne tänapäeval ja seal

on palju suundi edasisteks uuringuteks. Näiteks, võib uurida, kuidas võib

muusika ºanri klassi�kaatori paremaks teha. Samal ajal võib tegeleda teiste

klassi�kaatorite loomisega, mis baseeruvad teistel klassi�tseerimisideedel. Päris

huvitav ja kasulik võiks olla algoritm, mis eraldab positiivse ja negatiivse var-

jundiga kompositsioone.
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Appendices

Appendix A: Program code (on a compact disc)

Appendix B: Figures

Figure 1: Percentage of correctly classi�ed compositions obtained by 10-fold

evaluation strategy on the dataset of six genres (classic, pop, punk, rap/hip-

hop, rock, trance) using di�erent algorithms. The feature set contains fea-

tures of music surface and rhythm proposed in the paper [GT07].

Figure 2: Relative feature set importance. These classi�cation results are

calculated using a 10-fold evaluation model.
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Figure 3: Summary table of the features tested.

Figure 4: lowEnergy feature value for the compositions of di�erent genres

Figure 5: wavZero_std feature value for the compositions of di�erent genres
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Figure 6: wavAvAmpl_mean* feature value for the compositions of di�erent

genres

Figure 7: wavAvAmpl_std* feature value for the compositions of di�erent

genres

Figure 8: wavAvDif_mean* feature value for the compositions of di�erent

genres
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Figure 9: Average length of the compositions of di�erent genres

Figure 10: centroid_mean feature value for the compositions of di�erent

genres

Figure 11: centroid_std feature value for the compositions of di�erent gen-

res
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Figure 12: flux_mean feature value for the compositions of di�erent genres

Figure 13: maxH_std* feature value for the compositions of di�erent genres

Figure 14: maxL_mean* feature value for the compositions of di�erent genres
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Figure 15: a0 feature value for the compositions of di�erent genres

Figure 16: a1 feature value for the compositions of di�erent genres

32



(a) maxH_std* (b) maxL_mean*

(c) centroid_mean (d) centroid_std

(e) wavAvAmpl_mean* (f) wavAvAmpl_std*

Figure 17: Boxplot of the features' values (part 1)
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(a) wavAvDif_mean* (b) �ux_mean

(c) wavZero_std (d) lowEnergy

(e) a0 (f) a1 (g) size*

Figure 18: Boxplot of the features' values (part 2)
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