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Too much linear

 Logistic regression, Perceptron, Max. margin, 

Fisher’s discriminant, Linear regression, Ridge 

Regression, LASSO, …:

𝑓 𝒙 = 𝒘𝑇𝒙 + 𝑏

 PCA, LDA, ICA, …:

𝒙𝑇 = 𝑨𝒙

 K-means:

𝒄𝑖 =
1
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Linear is not enough

 Limited generalization ability
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Linear is not enough

 Limited applicability

Text?

Ordinal/Nominal data?

Graphs/Trees/Networks?

Shapes?

Graph nodes?
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Important idea #1

Important idea #2

Important idea #3



𝑓 𝑥 = 𝑤𝑥
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𝑥 → 𝑥′ ≔ 𝜙 𝑥 ≔ 𝑥, 𝑥2, 𝑥3
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Nonlinear feature space

𝑥 → 𝑥′ ≔ 𝜙 𝑥 ≔ 𝑥, 𝑥2, 𝑥3

𝑓 𝑥′ = 𝑤1𝑥 + 𝑤2𝑥
2 +𝑤3𝑥

3
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Nonlinear feature space

𝑓 𝒙 = 𝒘𝑇𝜙(𝒙)
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+Support for arbitrary data types

𝜙 text = word counts
𝜙 graph = node degrees
𝜙 tree = path lengths

…
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What if the dimensionality is high?

𝑥1, 𝑥2, … , 𝑥𝑚 → 𝑥1𝑥1, 𝑥1𝑥2, … , 𝑥𝑚𝑥𝑚
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What if the dimensionality is high?

𝑥1, 𝑥2, … , 𝑥𝑚 → 𝑥1𝑥1, 𝑥1𝑥2, … , 𝑥𝑚𝑥𝑚
𝑂(𝑚2) elements

For all k-wise products: 𝑂 𝑚𝑘

May 26, 2013



The Kernel Trick

 Let 𝜙 𝒙 = (𝑥1𝑥1, 𝑥1𝑥2, … , 𝑥𝑚𝑥𝑚)

 Consider

𝜙 𝒙 , 𝜙 𝒚 = 

𝑖𝑗

𝜙 𝒙 𝑖𝑗𝜙 𝒚 𝑖𝑗

May 26, 2013



The Kernel Trick

 Let 𝜙 𝒙 = (𝑥1𝑥1, 𝑥1𝑥2, … , 𝑥𝑚𝑥𝑚)

 Consider

𝜙 𝒙 , 𝜙 𝒚 = 

𝑖𝑗

𝜙 𝒙 𝑖𝑗𝜙 𝒚 𝑖𝑗

= 

𝑖𝑗

𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗

May 26, 2013



The Kernel Trick

 Let 𝜙 𝒙 = (𝑥1𝑥1, 𝑥1𝑥2, … , 𝑥𝑚𝑥𝑚)

 Consider

𝜙 𝒙 , 𝜙 𝒚 = 

𝑖𝑗

𝜙 𝒙 𝑖𝑗𝜙 𝒚 𝑖𝑗

= 

𝑖𝑗

𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 = 

𝑖𝑗

𝑥𝑖𝑦𝑖𝑥𝑗𝑦𝑗

May 26, 2013



The Kernel Trick

 Let 𝜙 𝒙 = (𝑥1𝑥1, 𝑥1𝑥2, … , 𝑥𝑚𝑥𝑚)

 Consider

𝜙 𝒙 , 𝜙 𝒚 = 

𝑖𝑗

𝜙 𝒙 𝑖𝑗𝜙 𝒚 𝑖𝑗

= 

𝑖𝑗

𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 = 

𝑖𝑗

𝑥𝑖𝑦𝑖𝑥𝑗𝑦𝑗

= 

𝑖

𝑥𝑖𝑦𝑖 

𝑗

𝑥𝑗𝑦𝑗
May 26, 2013



The Kernel Trick

 Let 𝜙 𝒙 = (𝑥1𝑥1, 𝑥1𝑥2, … , 𝑥𝑚𝑥𝑚)

 Consider

𝜙 𝒙 , 𝜙 𝒚 = 

𝑖𝑗

𝜙 𝒙 𝑖𝑗𝜙 𝒚 𝑖𝑗

= 

𝑖𝑗

𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 = 

𝑖𝑗

𝑥𝑖𝑦𝑖𝑥𝑗𝑦𝑗

= 

𝑖

𝑥𝑖𝑦𝑖 

𝑗

𝑥𝑗𝑦𝑗 =  

𝑖

𝑥𝑖𝑦𝑖

2

May 26, 2013



The Kernel Trick

 Let 𝜙 𝒙 = (𝑥1𝑥1, 𝑥1𝑥2, … , 𝑥𝑚𝑥𝑚)

 Consider

𝜙 𝒙 , 𝜙 𝒚 = 

𝑖𝑗

𝜙 𝒙 𝑖𝑗𝜙 𝒚 𝑖𝑗

=  

𝑖

𝑥𝑖𝑦𝑖

2

= 𝒙, 𝒚 2

May 26, 2013



The Kernel Trick

 Let 𝜙 𝒙 = (𝑥1𝑥1, 𝑥1𝑥2, … , 𝑥𝑚𝑥𝑚)

 Consider

𝜙 𝒙 , 𝜙 𝒚 = 

𝑖𝑗

𝜙 𝒙 𝑖𝑗𝜙 𝒚 𝑖𝑗

=  

𝑖

𝑥𝑖𝑦𝑖

2

= 𝒙, 𝒚 2

May 26, 2013



The Kernel Trick
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Polynomial kernel

𝐾 𝒙, 𝒚 = 𝒙, 𝒚 + 𝑅 𝑑



The Kernel Trick

What about:

𝐾 𝒙, 𝒚 = 𝒙, 𝒚 + 0.5 𝒙, 𝒚 2?
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The Kernel Trick

What about:

𝐾 𝑥, 𝑦 = 1 + 𝑥, 𝑦 +
1

2
𝑥, 𝑦 2 +

1

6
𝑥, 𝑦 3 +

1

24
𝑥, 𝑦 4?
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The Kernel Trick

What about:

𝐾 𝑥, 𝑦 = 

𝑖=0

∞
𝑥, 𝑦 𝑖

𝑖!
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Gaussian kernel

𝐾 𝒙, 𝒚 =
= exp(−𝛾‖𝒙 − 𝒚‖2)

= exp −
𝒙 − 𝒚 2

2𝜎2



The Kernel Trick

What about:

𝐾 𝑥, 𝑦 = 

𝑖=0

∞
𝑥, 𝑦 𝑖

𝑖!
= exp〈𝑥, 𝑦〉

Infinite-dimensional feature space!
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Exponential kernel

𝐾 𝒙, 𝒚 = exp −
𝒙 − 𝒚

2𝜎2



Kernels

May 26, 2013

http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html



Structured data kernels

 String kernels

 P-spectrum kernels

 All-subsequences kernels

 Gap-weighted subsequences kernels

 …

 Graph & tree kernels

 Co-rooted subtrees

 All subtrees

 Random walks

 … 
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Kernel

 A function 𝐾(𝒙, 𝒚) is a kernel, if

𝐾 𝒙, 𝒚 = 𝜙 𝒙 , 𝜙 𝒚

for some feature map 𝜙.
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Kernel matrix

 For a given kernel function 𝐾 and a finite 

dataset (𝒙1, 𝒙2, … , 𝒙𝑛) the 𝑛 × 𝑛 matrix

𝑲𝑖𝑗 ≔ 𝐾 𝒙𝑖 , 𝒙𝑗

is called the kernel matrix. 
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Kernel matrix

 Let 𝑿 be the data matrix, then

𝑲 = 𝑿𝑿𝑇

is the kernel matrix for the linear kernel

𝐾 𝒙, 𝒚 = 𝒙𝑇𝒚
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Kernel matrix

 Let 𝑿 be the data matrix, then

𝑲 = 𝑿𝑿𝑇

is the kernel matrix for the linear kernel

𝐾 𝒙, 𝒚 = 𝒙𝑇𝒚

 Let 𝜙 be a feature mapping. Then*

𝑲 = 𝜙 𝑿 𝜙 𝑿 𝑇

is the kernel matrix for the corresponding 

kernel 𝐾 𝒙, 𝒚 = 〈𝜙 𝒙 , 𝜙 𝒚 〉.
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Kernel theorem

 Not every function K is a kernel!

May 26, 2013
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Kernel theorem

 Not every function K is a kernel!

e. g. 𝐾 𝑥, 𝑦 = −1 is not

 Not every 𝑛 × 𝑛 matrix is a Kernel matrix!
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Kernel theorem

 Theorem:

𝐾 is a kernel function ⇔ 𝐾 is symmetric positive 

semidefinite

 A function is positive semidefinite iff for any 

finite dataset {𝒙1, 𝒙2, … , 𝒙𝑛} the corresponding 

kernel matrix is positive semidefinite.
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Kernel closure
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Kernel closure
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Feature space concatenation



Kernel closure
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Kernel closure
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Feature space tensor product



Kernel closure
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Kernel normalization

 Let 𝜙′ 𝑥 =
𝜙 𝑥

𝜙 𝑥

 Then

𝐾′ 𝑥, 𝑦 = 𝜙′ 𝑥 , 𝜙′ 𝑦 =
𝜙 𝑥

𝜙 𝑥
,
𝜙 𝑦

𝜙 𝑦
=

𝜙 𝑥 ,𝜙 𝑦

𝜙 𝑥 2 𝜙 𝑦 2
=

=
𝐾 𝑥, 𝑦

𝐾 𝑥, 𝑥 𝐾 𝑦, 𝑦
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Kernel matrix normalization

 Then

𝐾′ 𝑥, 𝑦 = 𝜙′ 𝑥 , 𝜙′ 𝑦 =
𝜙 𝑥

𝜙 𝑥
,
𝜙 𝑦

𝜙 𝑦
=

𝜙 𝑥 , 𝜙 𝑦

𝜙 𝑥 2 𝜙 𝑦 2
=

=
𝐾 𝑥, 𝑦

𝐾 𝑥, 𝑥 𝐾 𝑦, 𝑦

𝐾′𝑖𝑗 ≔
𝐾𝑖𝑗

𝐾𝑖𝑖𝐾𝑗𝑗
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Kernel matrix centering

𝒙𝑖 → 𝒙𝑖 −
1

𝑛
 

𝑘

𝒙𝑘

May 26, 2013



Kernel matrix centering

𝒙𝑖 → 𝒙𝑖 −
1

𝑛
 

𝑘

𝒙𝑘

May 26, 2013



Kernel matrix centering

𝒙𝑖 → 𝒙𝑖 −
1

𝑛
 

𝑘

𝒙𝑘

𝑿 → 𝑿 −
1

𝑛
𝟏𝑛𝟏𝑛
𝑇𝑿

May 26, 2013



Kernel matrix centering

𝒙𝑖 → 𝒙𝑖 −
1

𝑛
 

𝑘

𝒙𝑘

𝑿 → 𝑿−
1

𝑛
𝟏𝑛𝟏𝑛
𝑇𝑿

𝑿𝑿𝑇 → 𝑿−
1

𝑛
𝟏𝟏𝑇𝑿 𝑿 −

1

𝑛
𝟏𝟏𝑇𝑿

𝑇

May 26, 2013



Kernel matrix centering

𝒙𝑖 → 𝒙𝑖 −
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𝒙𝑘
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Kernel matrix centering

𝑿𝑿𝑇

→ 𝑿𝑿𝑇 −
1

𝑛
𝟏𝟏𝑇𝑿𝑿𝑇 −

1

𝑛
𝑿𝑿𝑇𝟏𝟏𝑇

+
1

𝑛2
𝟏𝟏𝑇𝑿𝑿𝑇𝟏𝟏𝑇

𝑲cent

≔ 𝑲−
1

𝑛
𝟏𝟏𝑇𝑲−

1

𝑛
𝑲𝟏𝟏𝑇 +

1

𝑛2
𝟏𝟏𝑇𝑲𝟏𝟏𝑇
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The Dual Representation

 Let 𝐴 be the input space, and let 𝐵 be the 

higher-dimensional feature space.

 Let 𝜙: 𝐴 → 𝐵 be the feature map.

 Fix a dataset {𝒙1, 𝒙2, … , 𝒙𝑛} ⊂ 𝐴

 Let 𝑤 =  𝑖 𝛼𝑖𝜙(𝒙𝑖) ∈ 𝐵

 We say that 𝛼𝑖 are the dual coordinates for 𝑤. 
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Dual coordinates

𝒘 = 

𝑖

𝛼𝑖𝜙(𝒙𝑖) = 𝜙 𝑿
𝑇𝜶 = 𝚵𝑻𝜶

Note that 𝚵𝚵𝑇 = 𝜙 𝑿 𝜙 𝑿 𝑇 = 𝑲

Now we can do all of the useful stuff using dual 

coordinates only.
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Dual coordinates

Let 

𝒘 = 𝚵𝑇𝜶
𝒖 = 𝚵T𝜷

Then

2𝒘 =
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Quiz

Today we heard three important ideas

 Important idea #1: __________

 Important idea #2: __________

 Important idea #3: __________

 Function/matrix 𝐾 is a kernel function/matrix 

iff it is __________

 Dual representation: ___ = ___ __
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Quiz

Those algoritms have kernelized versions:

___________________________ …
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