
MTAT.03.227 Machine Learning (Spring 2013)

Exercise session XIV: Support Vector Machines

Konstantin Tretyakov

May 13, 2013

The aim of this exercise session is to get acquainted with the inner workings
of support vector machine classification and regression. As usual, for all exercises
you need to write a brief explanation and, for most of them, also a short piece of
code demonstrating the result. You can submit your whole solution as a single
decently commented R file, provided it is sequentially readable and executable.

We shall use a slightly modified version of the familiar base code from Ex-
ercise Session VI. Fetch it at svm base.R.

Exercise 1 (2pt). We begin by analyzing a trivialized dataset consisting of Maximal mar-
ginjust four points. Use the functions load.data and plot.data to visualize it.

Use manual examination of the data to derive the parameters (w, b) of the
canonical1 maximal-margin classifier.

Hints.

1. Use pen and paper to sketch the location of the maximal margin separat-
ing hyperplane for the given dataset and its two margin-defining isolines
f(x) = ±1.

2. By visual examination, guess the coordinates of the weight vector w (up
to a constant). Use plot.classifier(w) and plot.data(data, add=T)

to verify your guess.

3. Next, find the length of the normal, |w|, such that would assure that the
closest training points are located at the isolines ±1. For this, note that
the distance between those two isolines is equal to d = 2/|w|.

4. Rescale the w you guessed in Step 2 to have length you computed in
Step 3.

5. Finally, compute the value for the bias parameter b by using the fact that
f(x1) = −1.

1A canonical maximal-margin classifier is the classifier for which the functional margin of
the closest training example is equal to 1. It is what we were talking about on the lecture.

1

6. Visualize the computed (w, b) using plot.classifier.

Next, we shall use R’s quadratic programming facilities to find a maximal
margin classifier for the same dataset. There are several packages which we
could use, but the simplest option seems to be the quadprog package and its
solve.QP function. Load the package using the command library(quadprog).

For the following you need to know that the invocation

> solve.QP(D, d, t(A), b)

will numerically solve the following quadratic programming problem:

argminx

1

2
xTDx− dTx,

s.t. Ax ≥ b.

Exercise 2 (3pt). Recall that the hard-margin SVM optimization problem Primal form
is:

argminw,b

1

2
‖w‖2,

s.t. ∀i (wTxi + b)yi ≥ 1.

Use solve.QP to compute a solution to this problem for our sample dataset.

Hints.

1. Determine what is x in this problem.

2. Rewrite the objective in the form 1
2x

TDx− dTx. What are D and d?

3. How many constraints are there? Rewrite them in the form Ax ≥ b.

4. Finally, define the necessary variables in R and invoke solve.QP as shown
above.

5. The quadratic programming solver will probably complain that the matrix
D is not positive semidefinite. You can address by adding a tiny value on
the diagonal of this matrix:

D = D + 1e-10*diag(nrow(D))

6. Confirm that the solution matches the one you obtained manually.

2

Exercise 3 (3pt). Now let us solve the SVM in dual form. Some formalities Dual form
aside, the dual form is obtained by representing the weight vector w as a linear
combination of training points:

w =
∑
i

αiyixi,

where αi are the unknowns (the dual variables) we shall be seeking for instead
of w.

In the dual form the optimization problem turns into2:

argminα

(
1

2
αT (K ◦Y)α− 1Tα

)

s.t. α ≥ 0,

yTα = 0,

where

K = XXT is the kernel matrix ,

Y = yyT ,

1 is a vector of ones, and

◦ denotes elementwise multiplication.

Recast this formulation in the format suitable for solve.QP and find both the
dual solution α and the corresponding bias term b. Finally, use the obtained α
values to compute w and compare your result to two previous attempts.

Hints.

1. Similarly to the previous exercise, you first need to recast the problem
in terms of D, d, A, b. Note that there is one equality constraint now.
Include its coefficients as the first row of the matrix A, its right side as the
first element of vector b and provide the parameter meq=1 to solve.QP.

2. Similarly to the previous exercise, if the solver complains about the lack
of positive semidefiniteness, add a small value to the diagonal of D.

3. Compute w as

w =
∑
i

αiyixi.

Note that this can be done concisely matrix multiplication.

2Note that in the lecture there was also the constraint α ≤ C. This constraint is not
present in the hard-margin case, however.

3

4. To find the bias term b find any support vector and use the fact that for a
support vector xi, in the case of hard-margin classification, it must hold
that

yi(w
Txi + b) = 1.

Examine the values α that you obtained. Try the following visualization:

plot.classifier(w, b)

plot(data, add=T)

text(data$X[,1], data$X[,2], alphas)

Exercise 4* (5pt). In the case of hard-margin classification you may always Finding the
bias term in
dual

find b by relying on the fact that all support vectors are always located exactly on
the margin (i.e. they satisfy f(xi) = yi). In the case of soft margin classification
this idea can also sometimes be exploited. Namely, all support vectors which
have 0 < α < C are also necessarily on the margin. However, this need not
always be the case – it may turn out so that all support vectors of a soft-margin
SVM are violating the margin.

How should you compute b in this case? Provide a proof of your claim.

Exercise 5 (1pt). Finally, let us use a third-party tool to fit an SVM model. e1071
The de-facto standard implementation in R is provided by the package e1071

and its svm function3. Invoke it as follows:

m = svm(data$X, data$y, scale=FALSE,

kernel="linear", type="C-classification", cost=9e9)

Examine the output. Find the α vector and the bias term. Do they match your
previous results? Compute the w vector.

Exercise 6 (1pt). So far we have only examined hard-margin classification Soft-margin
(note that the svm function does not have a specific hard-margin mode, but
specifying C = 9 ·109, as we did in the previous exercise, is more-or-less as good
as prohibiting any margin violations). Now let us study the effect of “relaxing”
the margin.

First, add a new datapoint x5 = (0, 5)T of class y5 = −1 to the dataset:

data = load.data()

data$X = rbind(data$X, c(0, 5))

data$y = c(data$y, -1)

Now run svm with cost = 9e9 and plot the resulting classifier using
plot.classifier and plot.data. Try to guess what happens to the separating
line once you reduce the cost to 1 and then further to 0.1. Verify your guesses.

4

Exercise 7* (2pt). A kernel (to be covered in the upcoming lecture) is a RBF kernel
generalization of an inner product. It turns out that everywhere where we use
an inner product xT

i xj , we may instead use a nonlinear function K(xi,xj),
which will serve the same purpose but will make our model non-linear.

One of the most popular kernels is the RBF kernel:

K(xi,xj) = exp
(
−γ‖xi − xj‖2

)
.

Study its properties on our toy example and answer the following questions.

1. The linear SVM in dual form, as you should know, corresponds to the
following functional:

f(x) =
∑
i

αiyixix + b.

Is this functional linear in x? Prove it.

2. What is the corresponding functional of an SVM with an RBF kernel? Is
it linear in x?

3. What is the value of K(x, z) for any point z that is geometrically very
close to x? What is the value of K(x, z) for points z that are far from x?

4. Use the svm function to train an SVM classifier with an RBF kernel for
the data you used in the previous exercise. Let γ = 1 and C = 9 · 109.

5. Use the function plot.svm.functional, provided in the base code, to
visualize the resulting functional4. Locate the decision boundary on the
resulting plot.

6. Try different values of γ ∈ {0.001, 0.01, 0.1, 1, 10} and visualize the results.
What do you observe?

7. For γ = 0.1 try different values of C ∈ {0.1, 1, 10}. What do you observe?

8. What, do you think, is a good way for picking suitable values of γ and C
in real-life applications?

Exercise 8* (1pt). In the lecture we did not get to cover the concept of Support vector
regressionSupport vector regression (SVR). Read about this approach on your own. As

the answer to this exercise, provide the formulation of the SVR optimization
problem in primal form, explaining the meaning of the parameters.

Exercise 9* (2pt). Finally, let us consider a simple case study. We shall use Case study
the spam dataset from the package ElemStatLearn:

3This is actually a packaged version of the LibSVM C library.
4Note that there is a function plot.svm in the e1071 package, but it does not exactly do

what we need here.

5

> install.packages("ElemStatLearn")

> library(ElemStatLearn)

> data(spam)

Each row in the spam data frame corresponds to an email. The emails have
been preprocessed and frequencies of certain words have been extracted – those
frequencies form the input features. You need to train a classifier to predict the
value of the output feature (the spam attribute).

Leave 25% of the training examples for final testing, and use the 75% for
training. Try SVM and at least one other classifier. For SVM, try at least the
linear and the RBF kernel and do not forget to tune the the gamma and cost

parameters. Explain how you proceeded. Once you settle on the best model,
evaluate it once on your held-out 25% and report the result.

6

