• Posted by Konstantin 29.03.2017 1 Comment

    The following is an expanded version of an explanatory comment I posted here.

    Alice's Diary

    Alice decided to keep a diary. For that she bought a notebook, and started filling it with lines like:

    1. Bought 5 apples.
    2. Called mom.
      ....
    3. Gave Bob $250.
    4. Kissed Carl.
    5. Ate a banana.
      ...

    Alice did her best to keep a meticulous account of events, and whenever she had a discussion with friends about something that happened earlier, she would quickly resolve all arguments by taking out the notebook and demonstrating her records. One day she had a dispute with Bob about whether she lent him $250 earlier or not. Unfortunately, Alice did not have her notebook at hand at the time of the dispute, but she promised to bring it tomorrow to prove Bob owed her money.

    Bob really did not want to return the money, so that night he got into Alice's house, found the notebook, found line 132 and carefully replaced it with "132. Kissed Dave". The next day, when Alice opened the notebook, she did not find any records about money being given to Bob, and had to apologize for making a mistake.

    Alice's Blockchain

    A year later Bob's conscience got to him and he confessed his crime to Alice. Alice forgave him, but decided to improve the way she kept the diary, to avoid the risk of forging records in the future. Here's what she came up with. The operating system Linups that she was using had a program named md5sum, which could convert any text to its hash - a strange sequence of 32 characters. Alice did not really understand what the program did with the text, it just seemed to produce a sufficiently random sequence. For example, if you entered "hello" into the program, it would output "b1946ac92492d2347c6235b4d2611184", and if you entered "hello " with a space at the end, the output would be "1a77a8341bddc4b45418f9c30e7102b4".

    Alice scratched her head a bit and invented the following way of making record forging more complicated to people like Bob in the future: after each record she would insert the hash, obtained by feeding the md5sum program with the text of the record and the previous hash. The new diary now looked as follows:

    1. 0000 (the initial hash, let us limit ourselves with just four digits for brevity)
    2. Bought 5 apples.
    3. 4178 (the hash of "0000" and "Bought 5 apples")
    4. Called mom.
    5. 2314 (the hash of "4178" and "Called mom")
      ...
      4492
    6. Gave Bob $250.
      1010 (the hash of "4492" and "Gave Bob $250")
    7. Kissed Carl.
      8204 (the hash of "1010" and "Kissed Carl")
      ...

    Now each record was "confirmed" by a hash. If someone wanted to change the line 132 to something else, they would have to change the corresponding hash (it would not be 1010 anymore). This, in turn, would affect the hash of line 133 (which would not be 8204 anymore), and so on all the way until the end of the diary. In order to change one record Bob would have to rewrite confirmation hashes for all the following diary records, which is fairly time-consuming. This way, hashes "chain" all records together, and what was before a simple journal became now a chain of records or "blocks" - a blockchain.

    Proof-of-Work Blockchain

    Time passed, Alice opened a bank. She still kept her diary, which now included serious banking records like "Gave out a loan" or "Accepted a deposit". Every record was accompanied with a hash to make forging harder. Everything was fine, until one day a guy named Carl took a loan of $1000000. The next night a team of twelve elite Chinese diary hackers (hired by Carl, of course) got into Alice's room, found the journal and substituted in it the line "143313. Gave out a $1000000 loan to Carl" with a new version: "143313. Gave out a $10 loan to Carl". They then quickly recomputed all the necessary hashes for the following records. For a dozen of hackers armed with calculators this did not take too long.

    Fortunately, Alice saw one of the hackers retreating and understood what happened. She needed a more secure system. Her new idea was the following: let us append a number (called "nonce") in brackets to each record, and choose this number so that the confirmation hash for the record would always start with two zeroes. Because hashes are rather unpredictable, the only way to do it is to simply try out different nonce values until one of them results in a proper hash:

    1. 0000
    2. Bought 5 apples (22).
    3. 0042 (the hash of "0000" and "Bought 5 apples (22)")
    4. Called mom (14).
    5. 0089 (the hash of "0042" and "Called mom (14)")
      ...
      0057
    6. Gave Bob $250 (33).
      0001
    7. Kissed Carl (67).
      0093 (the hash of "0001" and "Kissed Carl (67)")
      ...

    To confirm each record one now needs to try, on average, about 50 different hashing operations for different nonce values, which makes it 50 times harder to add new records or forge them than previously. Hopefully even a team of hackers wouldn't manage in time. Because each confirmation now requires hard (and somewhat senseless) work, the resulting method is called a proof-of-work system.

    Distributed Blockchain

    Tired of having to search for matching nonces for every record, Alice hired five assistants to help her maintain the journal. Whenever a new record needed to be confirmed, the assistants would start to seek for a suitable nonce in parallel, until one of them completed the job. To motivate the assistants to work faster she allowed them to append the name of the person who found a valid nonce, and promised to give promotions to those who confirmed more records within a year. The journal now looked as follows:

    1. 0000
    2. Bought 5 apples (29, nonce found by Mary).
    3. 0013 (the hash of "0000" and "Bought 5 apples (29, nonce found by Mary)")
    4. Called mom (45, nonce found by Jack).
    5. 0089 (the hash of "0013" and "Called mom (45, nonce found by Jack)")
      ...
      0068
    6. Gave Bob $250 (08, nonce found by Jack).
      0028
    7. Kissed Carl (11, nonce found by Mary).
      0041
      ...

    A week before Christmas, two assistants came to Alice seeking for a Christmas bonus. Assistant Jack, showed a diary where he confirmed 140 records and Mary confirmed 130, while Mary showed a diary where she, reportedly, confirmed more records than Jack. Each of them was showing Alice a journal with all the valid hashes, but different entries! It turns out that ever since having found out about the promotion the two assistants were working hard to keep their own journals, such that all nonces would have their names. Since they had to maintain the journals individually they had to do all the work confirming records alone rather than splitting it among other assistants. This of course made them so busy that they eventually had to miss some important entries about Alice's bank loans.

    Consequently, Jacks and Mary's "own journals" ended up being shorter than the "real journal", which was, luckily, correctly maintained by the three other assistants. Alice was disappointed, and, of course, did not give neither Jack nor Mary a promotion. "I will only give promotions to assistants who confirm the most records in the valid journal", she said. And the valid journal is the one with the most entries, of course, because the most work has been put into it!

    After this rule has been established, the assistants had no more motivation to cheat by working on their own journal alone - a collective honest effort always produced a longer journal in the end. This rule allowed assistants to work from home and completely without supervision. Alice only needed to check that the journal had the correct hashes in the end when distributing promotions. This way, Alice's blockchain became a distributed blockchain.

    Bitcoin

    Jack happened to be much more effective finding nonces than Mary and eventually became a Senior Assistant to Alice. He did not need any more promotions. "Could you transfer some of the promotion credits you got from confirming records to me?", Mary asked him one day. "I will pay you $100 for each!". "Wow", Jack thought, "apparently all the confirmations I did still have some value for me now!". They spoke with Alice and invented the following way to make "record confirmation achievements" transferable between parties.

    Whenever an assistant found a matching nonce, they would not simply write their own name to indicate who did it. Instead, they would write their public key. The agreement with Alice was that the corresponding confirmation bonus would belong to whoever owned the matching private key:

    1. 0000
    2. Bought 5 apples (92, confirmation bonus to PubKey61739).
    3. 0032 (the hash of "0000" and "Bought 5 apples (92, confirmation bonus to PubKey61739)")
    4. Called mom (52, confirmation bonus to PubKey55512).
    5. 0056 (the hash of "0032" and "Called mom (52, confirmation bonus to PubKey55512)")
      ...
      0071
    6. Gave Bob $250 (22, confirmation bonus to PubKey61739).
      0088
    7. Kissed Carl (40, confirmation bonus to PubKey55512).
      0012
      ...

    To transfer confirmation bonuses between parties a special type of record would be added to the same diary. The record would state which confirmation bonus had to be transferred to which new public key owner, and would be signed using the private key of the original confirmation owner to prove it was really his decision:

    1. 0071
    2. Gave Bob $250 (22, confirmation bonus to PubKey6669).
      0088
    3. Kissed Carl (40, confirmation bonus to PubKey5551).
      0012
      ...
      0099
    4. TRANSFER BONUS IN RECORD 132 TO OWNER OF PubKey1111, SIGNED BY PrivKey6669. (83, confirmation bonus to PubKey4442).
      0071

    In this example, record 284 transfers bonus for confirming record 132 from whoever it belonged to before (the owner of private key 6669, presumably Jack in our example) to a new party - the owner of private key 1111 (who could be Mary, for example). As it is still a record, there is also a usual bonus for having confirmed it, which went to owner of private key 4442 (who could be John, Carl, Jack, Mary or whoever else - it does not matter here). In effect, record 284 currently describes two different bonuses - one due to transfer, and another for confirmation. These, if necessary, can be further transferred to different parties later using the same procedure.

    Once this system was implemented, it turned out that Alice's assistants and all their friends started actively using the "confirmation bonuses" as a kind of an internal currency, transferring them between each other's public keys, even exchanging for goods and actual money. Note that to buy a "confirmation bonus" one does not need to be Alice's assistant nor register anywhere. One just needs to provide a public key.

    This confirmation bonus trading activity became so prominent that Alice stopped using the diary for her own purposes, and eventually all the records in the diary would only be about "who transferred which confirmation bonus to whom". This idea of a distributed proof-of-work-based blockchain with transferable confirmation bonuses is known as the Bitcoin.

    Smart Contracts

    But wait, we are not done yet. Note how Bitcoin is born from the idea of recording "transfer claims", cryptographically signed by the corresponding private key, into a blockchain-based journal. There is no reason we have to limit ourselves to this particular cryptographic protocol. For example, we could just as well make the following records:

    1. Transfer bonus in record 132 to whoever can provide signatures, corresponding to PubKey1111 AND PubKey3123.

    This would be an example of a collective deposit, which may only be extracted by a pair of collaborating parties. We could generalize further and consider conditions of the form:

    1. Transfer bonus in record 132 to whoever first provides x, such that f(x) = \text{true}.

    Here f(x) could be any predicate describing a "contract". For example, in Bitcoin the contract requires x to be a valid signature, corresponding to a given public key (or several keys). It is thus a "contract", verifying the knowledge of a certain secret (the private key). However, f(x) could just as well be something like:

        \[f(x) = \text{true, if }x = \text{number of bytes in record #42000},\]

    which would be a kind of a "future prediction" contract - it can only be evaluated in the future, once record 42000 becomes available. Alternatively, consider a "puzzle solving contract":

        \[f(x) = \text{true, if }x = \text{valid, machine-verifiable}\]

        \[\qquad\qquad\text{proof of a complex theorem},\]

    Finally, the first part of the contract, namely the phrase "Transfer bonus in record ..." could also be fairly arbitrary. Instead of transferring "bonuses" around we could just as well transfer arbitrary tokens of value:

    1. Whoever first provides x, such that f(x) = \text{true} will be DA BOSS.
      ...
    2. x=42 satisifes the condition in record 284.
      Now and forever, John is DA BOSS!

    The value and importance of such arbitrary tokens will, of course, be determined by how they are perceived by the community using the corresponding blockchain. It is not unreasonable to envision situations where being DA BOSS gives certain rights in the society, and having this fact recorded in an automatically-verifiable public record ledger makes it possible to include the this knowledge in various automated systems (e.g. consider a door lock which would only open to whoever is currently known as DA BOSS in the blockchain).

    Honest Computing

    As you see, we can use a distributed blockchain to keep journals, transfer "coins" and implement "smart contracts". These three applications are, however, all consequences of one general, core property. The participants of a distributed blockchain ("assistants" in the Alice example above, or "miners" in Bitcoin-speak) are motivated to precisely follow all rules necessary for confirming the blocks. If the rules say that a valid block is the one where all signatures and hashes are correct, the miners will make sure these indeed are. If the rules say that a valid block is the one where a contract function needs to be executed exactly as specified, the miners will make sure it is the case, etc. They all seek to get their confirmation bonuses, and they will only get them if they participate in building the longest honestly computed chain of blocks.

    Because of that, we can envision blockchain designs where a "block confirmation" requires running arbitrary computational algorithms, provided by the users, and the greedy miners will still execute them exactly as stated. This general idea lies behind the Ethereum blockchain project.

    There is just one place in the description provided above, where miners have some motivational freedom to not be perfectly honest. It is the decision about which records to include in the next block to be confirmed (or which algorithms to execute, if we consider the Ethereum blockchain). Nothing really prevents a miner to refuse to ever confirm a record "John is DA BOSS", ignoring it as if it never existed at all. This problem is overcome in modern blockchains by having users offer additional "tip money" reward for each record included in the confirmed block (or for every algorithmic step executed on the Ethereum blockchain). This aligns the motivation of the network towards maximizing the number of records included, making sure none is lost or ignored. Even if some miners had something against John being DA BOSS, there would probably be enough other participants who would not turn down the opportunity of getting an additional tip.

    Consequently, the whole system is economically incentivised to follow the protocol, and the term "honest computing" seems appropriate to me.

    Tags: , , , , ,

  • Posted by Konstantin 28.03.2017 No Comments

    Consider the following question:

    Which of the following two statements is logically true?

    1. All planets of the Solar System orbit the Sun. The Earth orbits the Sun. Consequently, the Earth is a planet of the Solar System.
    2. God is the creator of all things which exist. The Earth exists. Consequently, God created the Earth.

    implicationI've seen this question or variations of it pop up as "provocative" posts in social networks several times. At times they might invite lengthy discussions, where the participants would split into camps - some claim that the first statement is true, because Earth is indeed a planet of the Solar System and God did not create the Earth. Others would laugh at the stupidity of their opponents and argue that, obviously, only the second statement is correct, because it makes a valid logical implication, while the first one does not.

    Not once, however, have I ever seen a proper formal explanation of what is happening here. And although it is fairly trivial (once you know it), I guess it is worth writing up. The root of the problem here is the difference between implication and provability - something I myself remember struggling a bit to understand when I first had to encounter these notions in a course on mathematical logic years ago.

    Indeed, any textbook on propositional logic will tell you in one of the first chapters that you may write

        \[A \Rightarrow B\]

    to express the statement "A implies B". A chapter or so later you will learn that there is also a possibility to write

        \[A \vdash B\]

    to express a confusingly similar statement, that "B is provable from A". To confirm your confusion, another chapter down the road you should discover, that A \Rightarrow B is the same as \vdash A \Rightarrow B, which, in turn, is logically equivalent to A \vdash B. Therefore, indeed, whenever A \Rightarrow B is true, A \vdash B is true, and vice-versa. Is there a difference between \vdash and \Rightarrow then, and why do we need the two different symbols at all? The "provocative" question above provides an opportunity to illustrate this.

    The spoken language is rather informal, and there can be several ways of formally interpreting the same statement. Both statements in the puzzle are given in the form "A, B, consequently C". Here are at least four different ways to put them formally, which make the two statements true or false in different ways.

    The Pure Logic Interpretation

    Anyone who has enough experience solving logic puzzles would know that both statements should be interpreted as abstract claims about provability (i.e. deducibility):

        \[A, B \vdash C.\]

    As mentioned above, this is equivalent to

        \[(A\,\&\, B) \Rightarrow C.\]

    or

        \[\vdash (A\,\&\, B) \Rightarrow C.\]

    In this interpretation the first statement is wrong and the second is a correct implication.

    The Pragmatic Interpretation

    People who have less experience with math puzzles would often assume that they should not exclude their common sense knowledge from the task. The corresponding formal statement of the problem then becomes the following:

        \[[\text{common knowledge}] \vdash (A\,\&\, B) \Rightarrow C.\]

    In this case both statements become true. The first one is true simply because the consequent C is true on its own, given common knowledge (the Earth is indeed a planet) - the antecedents and provability do not play any role at all. The second is true because it is a valid reasoning, independently of the common knowledge.

    This type of interpretation is used in rhetorical phrases like "If this is true, I am a Dutchman".

    The Overly Strict Interpretation

    Some people may prefer to believe that a logical statement should only be deemed correct if every single part of it is true and logically valid. The two claims must then be interpreted as follows:

        \[([\text{common}] \vdash A)\,\&\, ([\text{common}] \vdash B)\,\&\, (A, B\vdash C).\]

    Here the issue of provability is combined with the question about the truthfulness of the facts used. Both statements are false - the first fails on logic, and the second on facts (assuming that God creating the Earth is not part of common knowledge).

    The Oversimplified Interpretation

    Finally, people very unfamiliar with strict logic would sometimes tend to ignore the words "consequently", "therefore" or "then", interpreting them as a kind of an extended synonym for "and". In their minds the two statements could be regarded as follows:

        \[[\text{common}] \vdash A\,\&\, B\,\&\, C.\]

    From this perspective, the first statement becomes true and the second (again, assuming the aspects of creation are not commonly known) is false.

    Although the author of the original question most probably did really assume the "pure logic" interpretation, as is customary for such puzzles, note how much leeway there can be when converting a seemingly simple phrase in English to a formal statement. In particular, observe that questions about provability, where you deliberately have to abstain from relying on common knowledge, may be different from questions about facts and implications, where common sense may (or must) be assumed and you can sometimes skip the whole "reasoning" part if you know the consequent is true anyway.

    Here is an quiz question to check whether you understood what I meant to explain.

    "The sky is blue, and therefore the Earth is round." True or false?

    Tags: , , , ,

  • Posted by Konstantin 21.03.2017 No Comments

    Ever since Erwin Schrödinger described a thought experiment, in which a cat in a sealed box happened to be "both dead and alive at the same time", popular science writers have been relying on it heavily to convey the mysteries of quantum physics to the layman. Unfortunately, instead of providing any useful intuition, this example has instead laid solid base to a whole bunch of misconceptions. Having read or heard something about the strange cat, people would tend to jump to profound conclusions, such as "according to quantum physics, cats can be both dead and alive at the same time" or "the notion of a conscious observer is important in quantum physics". All of these are wrong, as is the image of a cat, who is "both dead and alive at the same time". The corresponding Wikipedia page does not stress this fact well enough, hence I thought the Internet might benefit from a yet another explanatory post.

    The Story of the Cat

    The basic notion in quantum mechanics is a quantum system. Pretty much anything could be modeled as a quantum system, but the most common examples are elementary particles, such as electrons or photons. A quantum system is described by its state. For example, a photon has polarization, which could be vertical or horizontal. Another prominent example of a particle's state is its wave function, which represents its position in space.

    There is nothing special about saying that things have state. For example, we may say that any cat has a "liveness state", because it can be either "dead" or "alive". In quantum mechanics we would denote these basic states using the bra-ket notation as |\mathrm{dead}\rangle and |\mathrm{alive}\rangle. The strange thing about quantum mechanical systems, though, is the fact that quantum states can be combined together to form superpositions. Not only could a photon have a purely vertical polarization \left|\updownarrow\right\rangle or a purely horizontal polarization \left|\leftrightarrow\right\rangle, but it could also be in a superposition of both vertical and horizontal states:

        \[\left|\updownarrow\right\rangle + \left|\leftrightarrow\right\rangle.\]

    This means that if you asked the question "is this photon polarized vertically?", you would get a positive answer with 50% probability - in another 50% of cases the measurement would report the photon as horizontally-polarized. This is not, however, the same kind of uncertainty that you get from flipping a coin. The photon is not either horizontally or vertically polarized. It is both at the same time.

    Amazed by this property of quantum systems, Schrödinger attempted to construct an example, where a domestic cat could be considered to be in the state

        \[|\mathrm{dead}\rangle + |\mathrm{alive}\rangle,\]

    which means being both dead and alive at the same time. The example he came up with, in his own words (citing from Wikipedia), is the following:

    Schrodingers_cat.svgA cat is penned up in a steel chamber, along with the following device (which must be secured against direct interference by the cat): in a Geiger counter, there is a tiny bit of radioactive substance, so small, that perhaps in the course of the hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, the counter tube discharges and through a relay releases a hammer that shatters a small flask of hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The first atomic decay would have poisoned it.

    The idea is that after an hour of waiting, the radiactive substance must be in the state

        \[|\mathrm{decayed}\rangle + |\text{not decayed}\rangle,\]

    the poison flask should thus be in the state

        \[|\mathrm{broken}\rangle + |\text{not broken}\rangle,\]

    and the cat, consequently, should be

        \[|\mathrm{dead}\rangle + |\mathrm{alive}\rangle.\]

    Correct, right? No.

    The Cat Ensemble

    Superposition, which is being "in both states at once" is not the only type of uncertainty possible in quantum mechanics. There is also the "usual" kind of uncertainty, where a particle is in either of two states, we just do not exactly know which one. For example, if we measure the polarization of a photon, which was originally in the superposition \left|\updownarrow\right\rangle + \left|\leftrightarrow\right\rangle, there is a 50% chance the photon will end up in the state \left|\updownarrow\right\rangle after the measurement, and a 50% chance the resulting state will be \left|\leftrightarrow\right\rangle. If we do the measurement, but do not look at the outcome, we know that the resulting state of the photon must be either of the two options. It is not a superposition anymore. Instead, the corresponding situation is described by a statistical ensemble:

        \[\{\left|\updownarrow\right\rangle: 50\%, \quad\left|\leftrightarrow\right\rangle: 50\%\}.\]

    Although it may seem that the difference between a superposition and a statistical ensemble is a matter of terminology, it is not. The two situations are truly different and can be distinguished experimentally. Essentially, every time a quantum system is measured (which happens, among other things, every time it interacts with a non-quantum system) all the quantum superpositions are "converted" to ensembles - concepts native to the non-quantum world. This process is sometimes referred to as decoherence.

    Now recall the Schrödinger's cat. For the cat to die, a Geiger counter must register a decay event, triggering a killing procedure. The registration within the Geiger counter is effectively an act of measurement, which will, of course, "convert" the superposition state into a statistical ensemble, just like in the case of a photon which we just measured without looking at the outcome. Consequently, the poison flask will never be in a superposition of being "both broken and not". It will be either, just like any non-quantum object should. Similarly, the cat will also end up being either dead or alive - you just cannot know exactly which option it is before you peek into the box. Nothing special or quantum'y about this.

    The Quantum Cat

    "But what gives us the right to claim that the Geiger counter, the flask and the cat in the box are "non-quantum" objects?", an attentive reader might ask here. Could we imagine that everything, including the cat, is a quantum system, so that no actual measurement or decoherence would happen inside the box? Could the cat be "both dead and alive" then?

    Indeed, we could try to model the cat as a quantum system with |\mathrm{dead}\rangle and |\mathrm{alive}\rangle being its basis states. In this case the cat indeed could end up in the state of being both dead and alive. However, this would not be its most exciting capability. Way more suprisingly, we could then kill and revive our cat at will, back and forth, by simply measuring its liveness state appropriately. It is easy to see how this model is unrepresentative of real cats in general, and the worry about them being able to be in superposition is just one of the many inconsistencies. The same goes for the flask and the Geiger counter, which, if considered to be quantum systems, get the magical abilities to "break" and "un-break", "measure" and "un-measure" particles at will. Those would certainly not be a real world flask nor a counter anymore.

    The Cat Multiverse

    There is one way to bring quantum superposition back into the picture, although it requires some rather abstract thinking. There is a theorem in quantum mechanics, which states that any statistical ensemble can be regarded as a partial view of a higher-dimensional superposition. Let us see what this means. Consider a (non-quantum) Schrödinger's cat. As it might be hopefully clear from the explanations above, the cat must be either dead or alive (not both), and we may formally represent this as a statistical ensemble:

        \[\{\left|\text{dead}\right\rangle: 50\%, \quad\left|\text{alive}\right\rangle: 50\%\}.\]

    It turns out that this ensemble is mathematically equivalent in all respects to a superposition state of a higher order:

        \[\left|\text{Universe A}, \text{dead}\right\rangle + \left|\text{Universe B}, \text{alive}\right\rangle,\]

    where "Universe A" and "Universe B" are some abstract, unobservable "states of the world". The situation can be interpreted by imagining two parallel universes: one where the cat is dead and one where it is alive. These universes exist simultaneously in a superposition, and we are present in both of them at the same time, until we open the box. When we do, the universe superposition collapses to a single choice of the two options and we are presented with either a dead, or a live cat.

    Yet, although the universes happen to be in a superposition here, existing both at the same time, the cat itself remains completely ordinary, being either totally dead or fully alive, depending on the chosen universe. The Schrödinger's cat is just a cat, after all.

    Tags: , , , , , ,

  • Posted by Konstantin 07.03.2017 No Comments

    Ever since the "Prior Confusion" post I was planning to formulate one of its paragraphs as the following abstract puzzle, but somehow it took me 8 years to write it up.

    According to fictional statistical studies, the following is known about a fictional chronic disease "statistite":

    1. About 30% of people in the world have statistite.
    2. About 35% of men in the world have it.
    3. In Estonia, 20% of people have statistite.
    4. Out of people younger than 20 years, just 5% have the disease.
    5. A recent study of a random sample of visitors to the Central Hospital demonstrated that 40% of them suffer from statistite.

    Mart, a 19-year Estonian male medical student is standing in the foyer of the Central Hospital, reading these facts from an information sheet and wondering: what are his current chances of having statistite? How should he model himself: should he consider himself as primarily "an average man", "a typical Estonian", "just a young person", or "an average visitor of the hospital"? Could he combine the different aspects of his personality to make better use of the available information? How? In general, what would be the best possible probability estimate, given the data?

    Tags: , , , , , , ,