• Posted by Konstantin 04.01.2016 5 Comments

    Collecting large amounts of data and then using it to "teach" computers to automatically recognize patterns is pretty much standard practice nowadays. It seems that, given enough data and the right methods, computers can get quite precise at detecting or predicting nearly anything, whether it is face recognition, fraud detection or movie recommendations.

    Whenever a new classification system is created, it is taken for granted that the system should be as precise as possible. Of course, classifiers that never make mistakes are rare, but if it possible, we should strive to have them make as few mistakes as possible, right? Here is a fun example, where things are not as obvious.


    Consider a bank, which, as is normal for a bank, makes money by giving loans to its customers. Of course, there is always a risk that a customer will default (i.e. not repay the loan). To account for that, the bank has a risk scoring system which, for a given loan application, assesses the probability that the corresponding customer may default. This probability is later used to compute the interest rate offered for the customer. To simplify a bit, the issued interest on a loan might be computed as the sum of customer's predicted default risk probability and a fixed profit margin. For example, if a customer is expected to default with probability 10% and the bank wants 5% profit on its loans on average, the loan might be issued at slightly above 15% interest. This would cover both the expected losses due to non-repayments as well as the profit margin.

    Now, suppose the bank managed to develop a perfect scoring algorithm. That is, each application gets a rating of either having 0% or 100% risk. Suppose as well that within a month the bank processes 1000 applications, half of which are predicted to be perfectly good, and half - perfectly bad. This means that 500 loans get issued with a 5% interest rate, while 500 do not get issued at all.

    Think what would happen, if the system would not do such a great job and confused 50 of the bad applications with the good ones? In this case 450 applications would be classified as "100%" risk, while 550 would be assigned a risk score of "9.1%" (we still require the system to provide valid risk probability estimates). In this case the bank would issue a total of 550 loans at 15%. Of course, 50 of those would not get repaid, yet this loss would be covered from the increased interest paid by the honest lenders. The financial returns are thus exactly the same as with the perfect classifier. However, the bank now has more clients. More applications were signed, and more contract fees were received.

    True, the clients might be a bit less happy for getting a higher interest rate, but assuming they were ready to pay it anyway, the bank does not care. In fact, the bank would be more than happy to segment its customers by offering higher interest rates to low-risk customers anyway. It cannot do it openly, though. The established practices usually constrain banks to make use of "reasonable" scorecards and offer better interest rates to low-risk customers.

    Hence, at least in this particular example, a "worse" classifier is in fact better for business. Perfect precision is not really the ultimately desired feature. Instead, the system is much more useful when it provides a relevant and "smooth" distribution of predicted risk scores, making sure the scores themselves are decently precise estimates for the probability of a default.

    Tags: , , , , , ,

  • Posted by Konstantin 05.04.2015 4 Comments

    When it comes to data analysis, there are hundreds of exciting approaches: simple summary statistics and hypothesis tests, various clustering methods, linear and nonlinear regression or classification techniques, neural networks of various types and depths, decision rules and frequent itemsets, feature extractors and dimension reductors, ensemble methods, bayesian approaches and graphical models, logic-based approaches and fuzzy stuff, ant colonies, genetic algorithms and other optimization methods, monte-carlo algorithms, sampling and density estimation, logic-based and graph methods. Don't even get me started on the numerous visualization techniques.

    This sheer number of options is, however, both a blessing and a curse at the same time. In many practical situations just having those methods at your disposal may pose more problems than solutions. First you need to pick one of the approaches that might possibly fit your purpose. Then you will try to adapt it appropriately, spend several iterations torturing the data only to obtain very dubious first results, come to the conclusion that most probably you are doing something wrong, reconvince yourself that you need to try harder in that direction, spend some more iterations testing various parameter settings. Nothing works as you want it to, so you start everything from scratch with another method to find yourself obtaining new, even more dubious results, torturing the data even further, getting tired of that and finally settling on something "intermediately decent", which "probably makes sense", although you are not so sure any more and feel frustrated.

    I guess life of a statistician was probably way simpler back in the days when you could run a couple of t-tests, or an F-test from a linear regression and call it a day. In fact, it seems that many experimental (e.g. wetlab) scientists still live in that kind of world, when it comes to analyzing their experimental results. The world of T-tests is cozy and safe. They don't get you frustrated. Unfortunately, t-tests can feel ad-hockish, because they force you to believe that something "is normally distributed". Also, in practice, they are mainly used to confirm the obvious rather than discover something new from the data. A simple scatterplot will most often be better than a t-test as an analysis method. Hence, I am not a big fan of T-tests. However, I do have my own favourite statistical method, which always feels cozy and safe, and never gets me frustrated. I tend to apply it whenever I see a chance. It is the Fisher exact test in the particular context of feature selection.

    My appreciation of it stems from my background in bioinformatics and some experience with motif detection in particular. Suppose you have measured the DNA sequences for a bunch of genes. What can you do to learn something new about the sequence structure from that data? One of your best bets is to first group your sequences according to some known criteria. Suppose you know from previous experiments that some of the genes are cancer-related whereas others are not. As soon as you have specified those groups, you can start making observations like the following: "It seems that 10 out of my 20 cancer-related genes have the subsequence GATGAG in their DNA code. The same sequence is present in only 5 out of 100 non-cancer-related ones. How probable would it be to obtain similar counts of GATGAG, if the two groups were picked randomly?" If the probability to get those counts at random is very low, then obviously there is something fishy about GATGAG and cancer - perhaps they are related. To compute this probability you will need to use the hypergeometric distribution, and the resulting test (i.e. the question "how probable is this situation in a random split?") is known as the Fishers' exact test.

    This simple logic (with a small addition of a multiple testing correction on top) has worked wonders for finding actually important short sequences on the DNA. Of course it is not limited to sequence search. One of our research group's most popular web tools uses the same approach to discover functional annotations, that are "significantly overrepresented" in a given group of genes. The same approach can be used to construct decision trees, and in pretty much any other "supervised learning" situation, where you have groups of objects and want to find binary features of those objects, associated with the groups.

    Although in general the Fisher test is just one particular measure of association, it is, as I noted above, rather "cozy and comfortable". It does not force me to make any weird assumptions, there is no "ad-hoc" aspect to it, it is simple to compute and, most importantly, in my experience it nearly always produces "relevant" results.

    Words overrepresented in the speeches of Greece MPs

    Words overrepresented in the speeches of Greece MPs

    A week ago me, Ilya and Alex happened to take part in a small data analysis hackathon, dedicated to the analysis of speech transcripts from the European Parliament. Somewhat analogously to DNA sequences, speeches can be grouped in various ways: you can group them by the speaker who gave them, by country, gender or political party of that speaker, by the month or year when the speech was given or by any combination of such groupings. The obvious "features" of a speech are words, which can be either present or not present in it. Once you view the problem this way the task of finding group-specific words becomes self-evident and the Fisher test is the natural solution to it. We implemented this idea and extracted "country-specific" and "time-specific" words from the speeches (other options were left out due to time constraints). As is usual the case with my favourite method, the obtained results look relevant, informative and, when shown in the form of a word cloud, fun. Check them out.

    The complete source code of the analysis scripts and the visualization application is available on Github.


    Tags: , , , , , , ,

  • Posted by Konstantin 22.03.2015 4 Comments

    This is a repost of my quora answer to the question: In layman's terms, how does Naive Bayes work?

    Suppose that you are a working as a security guard at the airport. Your task is to look at people who pass the security line and pick some of them as being worthy of a more detailed screening. Now, of course, telling whether a person is a potential criminal or not by just looking at him/her is hard, if at all possible, but you need to do something. You have been put there for some reason, after all.

    One of the simplest ways to approach the problem, mentally, is the following. You assign a "risk value" for each person. At the beginning (when you don't have any information about the person at all) you set this value to zero.

    Now you start studying various features of the person in front of you: is it a male or a female? Is it a kid? Is he behaving nervously? Is he carrying a big bag? Is he alone? Did the metal detector beep? Is he a foreigner? etc. For each of those features you know (subconsciously due to your presuppositions, or from actual statistics) the average increase or decrease in risk of the person being a criminal that it entails. For example, if you know that the proportion of males among criminals is the same as the proportion of males among non-criminals, observing that a person is male will not affect his risk value at all. If, however, there are more males among criminals (suppose the percentage is, say, 70%) than among decent people (where the proportion is around 50%), observing that a person in front of you is a male will increase the "risk level" by some amount (the value is log(70%/50%) ~ 0.3, to be precise). Then you see that a person is nervous. OK, you think, 90% of criminals are nervous, but only 50% of normal people are. This means that nervousness should entail a further risk increase (of log(0.9/0.5) ~ 0.6, to be technical again, so by now you have counted a total risk value of 0.9). Then you notice it is a kid. Wow, there is only 1% of kids among criminals, but around 10% among normal people. Therefore, the risk value change due to this observation will be negative (log(0.01/0.10) ~ -2.3, so your totals are around -1.4 by now).

    You can continue this as long as you want, including more and more features, each of which will modify your total risk value by either increasing it (if you know this particular feature is more representative of a criminal) or decreasing (if the features is more representative of a decent person). When you are done collecting the features, all is left for you is to compare the result with some threshold level. Say, if the total risk value exceeds 10, you declare the person in front of you to be potentially dangerous and take it into a detailed screening.

    The benefit of such an approach is that it is rather intuitive and simple to compute. The drawback is that it does not take the cross-play of features into account. It may very well be the case that while the feature "the person is a kid" on its own greatly reduces the risk value, and the feature "has a moustache" on its own has close to no effect, a combination of the two ("a kid with a moustache") would actually have to increase the risk by a lot. This would not happen when you simply add the separate feature contributions, as described above.

    Tags: , , , , , ,

  • Posted by Konstantin 26.10.2012 4 Comments

    It is annoying how popular it is to ignore the Y-axis limits on bar charts nowadays. Unfortunately, this is also the default mode for most plotting packages, so no one wants to do anything about it. But something must be done.


    Tags: , ,

  • Posted by Konstantin 23.01.2012 2 Comments

    Visualization is a very powerful method for data analysis. Very often, plotting a bunch of scatterplots, barplots, heatmaps, animations or other kinds of imagery is enough to immediately see by your own eyes, whether there are any interesting patterns in the data (which often means you have nearly solved the problem) or not (which means you should prepare yourself for a long-term battle with the data which might not end up succesfully for you).

    Visualization is powerful because by visualizing data you essentially "plug it" directly into your brain's processing engine, using the visual interface that happens to be supported by your brain. You need to convert the data into CSV or an XLS format to load it into Excel. Analogously, you need a 2d image or an animation to load the data into your brain - it is that simple.

    This view suggests two immediate developments. Firstly, why don't we use the other "interfaces" that our brain has with the outside world for data processing? Could converting data to something which sounds, feels, tastes or smells be a useful method for exploiting our brain's analytic capabilities even further? Obviously, visual input has the most impact simply due to the fact that the retina is an immediate part of the brain. However, auditory signals, for example, seem to have a powerful processing system in our brain dedicated to them too.

    Secondly, if we can appreciate how much our brain is capable of extracting from a single image, why don't we try to automate such an approach? Modern computer vision has reached sufficient maturity to be capable of extracting fairly complex informative features from images. This suggests that a particular 2d plot of a dataset can be used as a kind of an informative "data fingerprint" which, when processed by a computer vision-driven engine, could be analyzed on the presence of "visible" patterns and visual similarity to other datasets.

    The fun part is that there has been some research done in this direction. Consider the paper "Computer Vision for Music Identification" by Yan Ke et al. The authors propose to convert pieces of music into a spectrogram image. Those spectrogram images can then be compared to each other using methods of computer vision, thus resulting in an efficient similarity metric, usable for search and identification of musical pieces. The authors claim to achieve 95% precision at 90% recall, which compares favourably to alternative methods. I think it would be exciting to see more of such techniques applied in a wider range of areas.


    Representing audio as pictures, figure from (Y.Ke, 2005)

    Representing audio as pictures, figure from (Y.Ke, 2005)

    Tags: , , , ,

  • Posted by Konstantin 16.01.2012 No Comments

    This post presumes you are familiar with PCA.

    Consider the following experiment. First we generate a random vector (signal) as a sequence of random 5-element repeats. That is, something like

    (0.5, 0.5, 0.5, 0.5, 0.5,   0.9, 0.9, 0,9, 0.9, 0,9,   0.2, 0.2, 0.2, 0.2, 0.2,   ... etc ... )

    In R we could generate it like that:

    num_steps = 50
    step_length = 5;
    initial_vector = c();
    for (i in 1:num_steps) {
      initial_vector = c(initial_vector, rep(runif(1), step_length));

    Here's a visual depiction of a possible resulting vector:

    Initial random vector

    plot(initial_vector), zoomed in

    Next, we shall create a dataset, where each element will be a randomly shifted copy of this vector:

    library(magic) # Necessary for the shift() function
    dataset = c()
    for (i in 1:1000) {
      shift_by = floor(runif(1)*num_steps*step_length) # Pick a random shift
      new_instance = shift(initial_vector, shift_by)   # Generate a shifted instance
      dataset = rbind(dataset, new_instance);          # Append to data

    Finally, let's apply Principal Component Analysis to this dataset:

    pca = prcomp(dataset)

    Question - how do the top principal components look like? Guess first, then read below for the correct answer.

    Read more...

    Tags: , ,

  • Posted by Konstantin 10.01.2012 No Comments

    It is not uncommon when a long-running scientific study or an experiment produces results which are, at best, uninteresting. The measured effect may be too weak to be reported on convincingly given the data at hand. None the less, resources have been put into it, many man-months have been spent, and thus a paper must be published. The researcher must therefore present his results in a way convincing enough for the reviewers to be lulled into acceptance.

    The following are the three best methods for doing that (and I have seen those being used in practice). Next time you read someone's paper (or write your own), keep them in mind.

    1. Use an irrelevant (and preferably strict) hypothesis test.
      Suppose you want to show that a set of measurements in one group differs from the set of measurements in the other group. The typical approach here is the T-test or the Wilcoxon test, both of which detect whether elements in one group are on average greater than those in the other group. If, however, you find that the tests fail on your data (i.e., there is no easily detectable difference in measurement magnitudes), why don't you try something like the Kolmogorov-Smirnov test, which checks whether the distributions of the two groups are different. It is a much stricter condition. In fact the tiniest outlier in your data will easily get you a low p-value and thus something to stick in the face of a reviewer. If even the KS test did not work, try testing something even less relevant, such as, whether your data is normally distributed. Most probably it is not, here's your low p-value! Remember - the smaller your p-values, the better is your paper!
    2. Avoid significance testing completely
      If you can't get a low p-value anywhere, do not worry. Significance testing is going somewhat out of fashion nowadays anyway, so it is possible to avoid it and still sound convincing. If one group of measurements has 40% of successes and the other has 42% - why not simply present those two numbers as obvious proof that the second group is better. Using ratios is also a smart idea. Say, some baseline algorithm has a 1% chance of success. You now test your algorithm and discover that out of 10 trials it had 1 success. That means your algorithm has just demonstrated a 10% success rate, which is ten times better than the baseline! Finally, ROC curves can often be used to hide the fact that your data is too tiny to make any conclusions. No one really ever checks for significance of those.
    3. Sweep multiple testing under the carpet
      If you are analyzing a dataset with 1000 attributes and 50 datapoints, it is not really very surprising if one of those attributes will seem "interesting" (e.g. highly correlated with the target effect) purely by chance - there is often nothing significant in finding one out of a thousand. However, if you only mention that one (or perhaps 10-50) of the original attributes, your results will magically become significant and no reviewer will be able to catch your cheating.

    There are certainly more, and I'll keep the post updated if I come up with a worthy addition. If you have something to add, please do comment.

    Tags: , , ,

  • Posted by Konstantin 11.10.2009 2 Comments

    I've recently stumbled upon a simple observation, which does not seem to be common knowledge and yet looks quite enlightening. Namely: polynomials provide an excellent way of modeling data in an order-agnostic manner.

    The situations when you need to represent data in an order-agnostic way are actually fairly common.  Suppose that you are given a traditional sample x_1, x_2, \dots, x_n and are faced with a task of devising a generic function of the sample, which could only depend on the values in the sample, but not on the ordering of these values. Alternatively, you might need to prove that a given statistic is constant with respect to all permutations of the sample. Finally, you might simply wish to have a convenient mapping for your feature vectors that would lose the ordering information, but nothing else.

    The most common way of addressing this problem is sorting the sample and working with the order statistics x_{(1)}, x_{(2)}, \dots, x_{(n)} instead of the original values. This is not always convenient. Firstly, the mapping of the original sample to the corresponding vector of order statistics (i.e. the sorting operation) is quite complicated to express mathematically. Secondly, the condition that the vector of order statistics is always sorted is not very pleasant to work with. A much better idea is to represent your data as a polynomial of the form

        \[p_x(z) = (z+x_1)(z+x_2)\dots(z+x_n)\,.\]

    This will immediately provide you with a marvellous tool: two polynomials p_x and p_y are equal if and only if their roots are equal, which means, in our case, that the samples x_1,\dots,x_n and y_1,\dots,y_n are equal up to a reordering.

    Now in order to actually represent the polynomial we can either directly compute its coefficients

        \[p_x(z) = z^n + a_1z^{n-1} + \dots + a_n\,,\]

    or calculate its values at any n different points (e.g. at 0,1,\dots,n-1) - in any case we end up with the same amount of data as we had originally (i.e. n values), but the new representation is order-agnostic and has, arguably, much nicer properties than the order statistics vector.

    It is not without its own problems, of course. Firstly, it requires at least \Omega(n^2) time to compute. Secondly, not every polynomial will have n real-valued roots. And thirdly, the interpretation of the new "feature vector" is not necessarily intuitive or meaningful. Yet nonetheless, it's a trick to consider.

    Tags: , , , ,

  • Posted by Konstantin 26.02.2009 No Comments

    The first step in the analysis of multivariate data is visualization. Histograms of attribute distributions, scatterplots, box-and-whiskers diagrams, parallel coordinate plots, self organizing maps, and even plots of happy faces - are all means of helping a human to visually comprehend multidimensional data and expoit the enormous power of the human brain to detect patterns. Of all these techniques, two-dimensional scatterplots are perhaps the most popular, as they tend to provide an especially "realistic" feel for the data. But when your data has more than two attributes (perhaps hundreds or thousands), how do you choose the two projection coordinates that would provide you with the "best angle" on the data?

    The easiest answer to that question is, of course, to pick a pair of attributes Ai and Aj, and simply plot one versus the other. Unfortunately, this doesn't usually work well, especially when the dataset does have hundreds of attributes. Therefore, the most popular approach in practice is to use PCA and project the data onto the two largest principal components, which mostly results in a rather insightful image.

    The PCA projection is, however, completely unsupervised. If your data has class labels assigned to points, PCA does not take them into account. No matter what is the labeling, PCA will always produce the same projection onto the coordinates with the highest variation. This might leave an improper impression that the two classes overlap a lot when in fact they do not. Therefore, this is not what you need. Usually, in the case of labeled data you expect from a scatterplot to provide an indication of how separated the two classes are from each other, and how difficult could it be to discriminate between them. It turns out that it is very easy to construct a linear projection with such properties.

    The Linear classifier-based Scatterplot

    Assume there are two classes in the data and we are interested in a linear projection, that demonstrates how separated the classes are. Let us train a linear classifier to discriminate the two classes. It does not matter which algorithm you use, as long as it results in a separating hyperplane. Now naturally, the normal to this hyperplane is the main coordinate of interest to you: it is the direction along which the data will be classified linearly by your algorithm. If there is a coordinate for demonstrating separation, this must be it. The choice of the second projection coordinate does not matter much, so I would propose picking any direction orthogonal to the first.

    When you have three classes you could select the first projection coordinate as the normal of a hyperplane, separating the first class from the second, and the second coordinate as the normal of a hyperplane, separating the first class from the third.

    Finally, note that in general you need not limit yourself to linear classifiers only. Any classifier of the form y_i = \mathrm{sign}(f(x_i)) will provide you with an informative coordinate projection function f(x). This is a natural "supervised" alternative to kernel-PCA or SOM.

    Naive supervised linear scatterplot (NS-plot)

    To be somewhat more specific, here's a suggestion of a very simple implementation for the abovementioned idea. To avoid the use of a potentially complicated linear classifier training algorithm, let us just pick the vector connecting the means of the two classes as the first projection coordinate. The second coordinate is chosen at random and then orthogonalized with the first one. The Scilab code of the whole algorithm is therefore the following:

      // Input:
      //   X - the data matrix (instances in rows, attributes in columns)
      //   C - class assignments (C(i) is the class of instance X(i,:))
      mean_1 = mean(X(C ==  1, :), 'r')';
      mean_2 = mean(X(C == -1, :), 'r')';
      v1 = (mean_2 - mean_1)/norm(mean_2 - mean_1);
      v2 = rand(v1);
      v2 = v2 - v2'*v1*v1;
      v2 = v2/norm(v2);
      X_proj = X*[v1 v2];
      // Output:
      //   X_proj - the projected coordinates

    Notice how much simpler and more efficient it is than PCA. Despite the simplicity, I haven't seen the use of such a plot anywhere else, so let me coin the boring name NS-plot for it. Personal experience shows that the resulting plot is visually never much worse than a PCA plot, and most often the two plots complement each other. Let me illustrate that on two simple examples.

    The IRIS dataset. The plots below show the PCA and the NS plots of the famous iris dataset (where I removed the first class). There is clearly no strong advantage of one plot over the other except that PCA is more difficult to compute.

    The ARCENE dataset. The following plots depict the 1000-attribute ARCENE sample dataset. We can see how PCA prefers to stress the unsupervised clustering present in the dataset, thus potentially deemphasizing the specifics of class labeling. In this case, I would say, the PCA and the NS plots complement each other.


    Noticed the circled points on the plots above? This is one other small trick that I find quite useful, and that does not seem to be widely known. The circled points denote the "boundary" - these are the points whose nearest neighbor is of a different class than their own. The more boundary points there are - the more difficult is the classification problem. The boundary is not an absolute notion, because there are various ways to define distance between points. My suggestion would be to standardize all attributes and use the euclidean norm, unless you have good reasons to do something else (e.g. you a-priori know good weights for the attributes, etc).

    Tags: ,

  • Posted by Konstantin 22.01.2009 2 Comments

    I bet most of you haven't heard of MDX, because it seems to be a technology that is difficult to stumble upon. It is not covered in university courses, not mentioned in the headlines of PC-magazine articles, and the corresponding google search returns about 20000 results, which makes it thousands (and even tens of millions) times less popular than most other related keywords. This is completely unfair. I believe MDX is compulsory knowledge for everyone who is educated in databases and data analysis enough to appreciate the virtues of both SQL queries and Excel-like spreadsheet processing. A famous quote by Alan Perlis says: "A language that doesn't affect the way you think about programming, is not worth knowing". In these terms, MDX is a language well worth knowing.

    MDX stands for Multidimensional Expressions. It is a language for specifying computations and performing queries on a multidimensional database, which effectively provides the computing power of spreadsheets in the form of a query language. Although it is not possible to explain all of MDX in a blog post, I'll try to show the gist of it in a couple of examples. I hope it will raise at least some interest in those, who are patient enough to read to the end. To understand MDX you need some experience with spreadsheets, so I'll assume you do and use the analogies with Excel.

    Multidimensional data. You use spreadsheets to work with tabular data, i.e. something like that:

    Tartu Tallinn
    Jan 21 -1.0 °C -2.1 °C
    Jan 22 -0.2 °C -0.2 °C
    Jan 23 0.3 °C -0.2 °C
    Average temperature

    This is a two-dimensional grid of numbers. Each point in the grid can be indexed by a tuple (Date, City). A multidimensional database is essentially the same grid but without the limitation of two dimensions. For instance, if there are several methods of measuring temperature, you can add a new dimension and index each cell by a tuple (Date, City, MeasurementMethod). And if you wish to keep both the average temperature and humidity, you just add a fourth dimension MeasureType to the database and store both, etc. Once your database becomes multidimensional it becomes impossible to display all of it as a two-dimensional table, so you will have to explore it by slices. For example, if the database did indeed contain 4 dimensions (Date, City, MeasurementMethod, MeasureType) then the above table would be a slice of it for (MeasureType = Temperature, MeasurementMethod = Usual). The MDX query corresponding to the slice would look as follows:

        { City.Tartu, City.Tallinn } on columns,
        { Date.Jan.21, Date.Jan.22, Date.Jan.23 } on rows
      where (MeasureType.Temperature, MeasurementMethod.Usual)

    Cell calculations. The second thing you use spreadsheets for is to compute new cell values from the existing ones. For example, you might wish to augment the table above with a column showing the temperature difference between Tartu and Tallinn and a row showing the average temperature over three days:

    Tartu Tallinn Difference
    Jan 21 -1.0 °C -2.1 °C 1.1 °C
    Jan 22 -0.2 °C -0.2 °C 0.0 °C
    Jan 23 0.3 °C -0.2 °C 0.5 °C
    Average -0.3 °C -0.83 °C 0.53 °C
    Average temperature

    To do that in Excel you would have to enter a formula for each cell in the new column and row. In MDX you analogously write:

      create member City.Difference as (City.Tartu - City.Tallinn)
      create member Date.Jan.Average as 
             (Avg({ Date.Jan.21, Date.Jan.22, Date.Jan.23 }))

    Note that once you have defined the new members, they apply to any slice of your data. I.e., you have just defined the way to compute City.Difference and Date.Jan.Average for all existing measure types and measurement methods. Moreover, many of the useful aggregate computations are already predefined for you. For example, the MDX server would implicitly understand that Date.Jan denotes be the aggregation (e.g. average) of values over all the days of January, and Date is the aggregation of values over all the dates ever. Similarly, City denotes the aggregation over all cities. Thus, selecting the average temperature over all cities in January is a matter of requesting

      where (Date.Jan, City, MeasureType.Temperature, 

    Filters, orders and more. You often need to query the data for things like "cities with the highest average temperature in January", or request to "order days by the temperature difference between Tartu and Tallinn". This is where both the power and complexity of MDX becomes visible. The first query would look as follows:

        Filter(City.Members, Date.Jan == Max(Date.Jan)) on columns
      where (MeasureType.Temperature, MeasurementMethod.Usual)

    Notice how much more expressive this is in comparison to the equivalent query you would have to come up with in SQL. Besides slicing, filtering and ordering, an MDX server can support lots of various generic data processing and analysis functions (here, the exact capabilities depend on the vendor). Thus, when properly tuned, even the tasks such as "selecting differentially expressed genes that play a significant role in a linear model for predicting cancer stage from microarray expression data" could become a matter of a single concise query.

    Pretty cool, don't you think?

    Tags: , , , , ,